THERMODYNAMICS AND MOLECULAR BASES OF THE INTERACTION OF AMPICILLIN AND STREPTOMYCIN AT THEIR BINDING SITES OF BOVINE SERUM ALBUMIN
Research Areafaculty-of-veterniary-medicine
YearJ. Therm Anal Calorim (2013) 112:945–952
AuthorsTHERMODYNAMICS AND MOLECULAR BASES OF THE INTERACTION OF AMPICILLIN AND STREPTOMYCIN AT THEIR BINDING SITES OF BOVINE SERUM ALBUMIN
Journal
Volume
Month
ISSN
AbstractTHERMODYNAMICS AND MOLECULAR BASES OF THE INTERACTION OF AMPICILLIN AND STREPTOMYCIN AT THEIR BINDING SITES OF BOVINE SERUM ALBUMIN Mahmoud Kandeel • Remi Nakashima • Yoshiaki Kitamura • Mohamed Balaha • Magdy Abdelaziz • Yukio Kitade Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshiekh University, Kafrelshiekh 33516, Egypt United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, JapanDepartment of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt ABSTRACT Among the biological parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of ampicillin and streptomycin at their binding sites of bovine serum albumin (BSA) were investigated. The binding constant varied from 3.2 9 103 M-1 at 298 K to 37.5 9 103 M-1 at 313 K for ampicillin, and from 10.7 9 103 M-1 at 298 K to 3.5 9 103 M-1 at 313 K for streptomycin. By increasing the temperature, from 298 to 313 K, the binding affinity decreased by about 11-fold for ampicillin. Conversely, streptomycin showed stronger binding at higher temperature, which is decreased by threefold at 298 K. Interestingly, the affinity of ampicillin with the free BSA was *4-fold higher than the binding with BSA/streptomycin complex. In contrast, the affinity of streptomycin with the free BSA was *6-fold lower than the binding with BSA/ampicillin complex. Mutual binding experiments indicate that ampicillin and streptomycin are sharing both of common and different binding sites on BSA. Dissection of the forces of interactions indicated that rigid body binding was the mode of binding of ampicillin and streptomycin with BSA with minor degree of conformational changes. Both of ampicillin and streptomycin can bind with free BSA. Furthermore, the binding of ampicillin with BSA improves the binding of streptomycin,= while the binding of streptomycin with BSA adversely affect the binding of ampicillin
download

جميع الحقوق محفوطة ©للوحدة المركزية للبوابة الالكترونية جامعة كفرالشيخ