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Abstract

The topology induced by binary relations is used to generalize the basic rough set concepts.

The suggested topological structure opens up the way for applying rich amount of topological

facts and methods in the process of granular computing, in particular, the notion of topolog-

ical membership functions is introduced that integrates the concept of rough and fuzzy sets.
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1. Introduction

The concept of topological structures [3] and their generalizations are one of the
most powerful notions in system analysis. Many works have appeared recently for

example in structural analysis [4], in chemistry [17], and physics [1]. The purpose

of the present work is to put a starting point for the applications of abstract topo-

logical theory into fuzzy set theory, granular computing and rough set analysis. Fuz-

zy set theory appeared for the first time in 1965, in famous paper by Zadeh [19]. Since
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then a lot of fuzzy mathematics have been developed and applied to uncertainty rea-

soning. In this theory, concepts like fuzzy set, fuzzy subset, and fuzzy equality (be-

tween two fuzzy sets) are usually depend on the concept of numerical grades of

membership. On the other hand, rough set theory, introduced by Pawlak in 1982

[13], is a mathematical tool that supports also the uncertainty reasoning but qualita-
tively. Their relationships have been studied in [11,12,14,18]. In this paper, we will

integrate these ideas in terms of concepts in topology. Topology is a branch of math-

ematics, whose concepts exist not only in almost all branches of mathematics, but

also in many real life applications. We believe topological structure will be an impor-

tant base for knowledge extraction and processing.
2. Basic concepts

Motivation for rough set theory has come from the need to represent subsets of a

universe in terms of equivalence classes of a partition of that universe. The partition

characterizes a topological space, called approximation space K = (U,R), where U is

a set called the universe and R is an equivalence relation [7,15]. The equivalence clas-

ses of R are also known as the granules, elementary sets or blocks; we will use

Rx � U to denote the equivalence class containing x 2 U. In the approximation

space, we consider two operators, the upper and lower approximations of subsets:
Let X � U.

RX ¼ fx 2 U : Rx \ X 6¼ /g;

RX ¼ fx 2 U : Rx � Xg:

Boundary, positive and negative regions are also defined:

BNRðX Þ ¼ RX 
 RX ;

POSRðX Þ ¼ RX ;

NEGRðX Þ ¼ U 
 RX :

These notions can be also expressed by rough membership functions [15], namely,

gR
X ðxÞ ¼

jRx \ X j
jRxj

; x 2 U :

Different values defines boundary (0 < gR
X ðxÞ < 1), positive (gR

X ðxÞ ¼ 1) and nega-

tive (gR
X ðxÞ ¼ 0) regions. The membership function is a kind of conditional probabil-

ity and its value can be interpreted as a degree of certainty to which x belongs to X.
A quotient set version is considered in [12,10].

Fuzzy set [19] is a way to represent populations that set theory can�t describe def-
initely, fuzzy sets use a many (usually infinite) valued membership function, unlike

classical set theory which uses a two valued membership function (i.e. an element
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is either in a set or it is not). Let U denotes a (universal) set and A � U. Then, a mem-

bership function on U, lA, is a function;

lA : U ! L for some partially ordered set L

L usually is a lattice [2]. Intuitively the membership function, lA, gives the degree to

which an element x 2 U is in the fuzzy set A. In the case L is the closed interval [0, 1],

we call it the Standard Fuzzy Set Theory.

A topological space [3] is a pair (U,s) consisting of a set U and family s of subset

of U satisfying the following conditions:

(T1) U 2 s and U 2 s.
(T2) s is closed under arbitrary union.
(T3) s is closed under finite intersection.

The pair (U,s) is called a space, the elements of U are called points of the space,

the subsets of U belonging to are called open set in the space, and the complement of

the subsets of U belonging to s are called closed set in the space; the family s of open
subsets of U is also called a topology for U.

It often happens that the open sets of space can be very complicated and yet they

can all be described using a selection of fairly simple special ones. When this hap-
pens, the set of simple open sets is called a base or subbase (depending on how

the description is to done). In addition, it is fortunate that many topological concepts

can be characterized in terms of these simpler base or subbase elements. Formally, A

family b � s is called a base for (U,s) iff every non_empty open subset of U can be

represented as a union of subfamily of b. Clearly, a topological space can have many

bases. A family S � s is called a subbase iff the family of all finite intersections is a

base for (U,s).

A ¼ \fF � U : A � F and F is closedg is called the s-closure of a subset A � U :

Evidently, A is the smallest closed subset of U which contains A. Note that A is

closed iff A = A.

A
 ¼ [fG�U :G� A and G is openg is called the s-interior of a subset A�U :

Evidently, A� is the union of all open subsets of U which containing in A. Note

that A is open iff A = A�. And

Ab ¼ A
 A
 is called the s-boundary of a subset A � U :
3. Rough set theory in topological spaces

The reference space in rough set theory is the approximation space whose topol-

ogy is generated by the equivalence classes of R. This topology belongs to a special

class known by Clopen topology, in which every open set is closed. Clopen topology
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is called quasi-discrete topology in digital geometry; Lin calls it Pawlak space [7].

Clopen topology is a kind of approximations that are transitive. It is too restrictive,

for example, ‘‘East LA is close to LA, LA is close to West LA. However, East LA is

not considered to be close to West LA’’ [7]; approximations are often not transitive.

Lin introduced neighborhood system to handle such general situations [5,6,8]. We
will use topology; in other words, the ‘‘approximation space’’ is a topological space.

We will express rough set properties in terms of topological concepts. Let X a sub-

set. Let X ;X 
 and Xb be closure, interior, and boundary points respectively. X is ex-

act if Xb = U, otherwise X is rough. It is clear X is exact iff X ¼ X 
. In Pawlak space a

subset X � U has two possibilities rough or exact. For a general topological space,

X � U. X has the following types of definability:

(1) X is totally definable if X is exact set ‘‘X ¼ X ¼ X 
’’,
(2) X is internally definable if X ¼ X 
; X 6¼ X ,

(3) X is externally definable if X 6¼ X 
; X ¼ X ,
(4) X is undefinable if X 6¼ X 
; X 6¼ X .
Proposition 1. If A is an exact set in (U,s) and s � s 0 then A is exact with respect to
s 0.
Proof. Since BNDsA � BNDsA and BNDs A = U. Then BNDs0A ¼ U and A is exact

with respect to s 0. In other words if A is s_exact then A is s_clopen and consequently

s 0_clopen. Hence A is s 0_exact. h

It is easy to have examples for a s 0_exact set which is not s_exact. Let us observe
that cls0A ¼ clsA iff ints0A

c ¼ intsA
c: The following proposition gives the condition

for s 0_exact sets to be s_exact sets, s � s 0.
Proposition 2. If (U,s) is a space and s � s 0 then each exact set in s 0 is exact in s 0 iff

clsG = cls0G, "G 2 s 0.
Proof. If A is s 0_exact then cls 0A = A and clsA = A, hence clsA = cls0A. Conversely:

if clsA = cls 0A and A is s 0_exact. Then A is s_exact. h

Original rough membership function is defined using equivalence classes. We will

extend it to topological spaces. If s is a topology on a finite set U, where its base is b,
then the rough membership function is

ls
X ðxÞ ¼

jf\Bxg \ X j
j \ Bxj

; Bx 2 b; x 2 U

where Bx is any member of b containing x. It can be shown that this number is inde-

pendent of the choice of bases. Since, the intersection of all members of the topology

containing x concedes with the intersection of all members of a base containing x.
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Note that if the topology is the Clopen one x belongs to a unique member of the

base. Moreover the above membership function give the ordinary set theory if s is

discrete topology and rough set theory if s is Clopen(quasi discrete) topology.

The following example illustrates the above definition. Let U = {0,1,2,3,4,5},

b = {{2},{3},{0,1,2},{2,3,4}{3,5}}, X = {2,4,5}, we get:

ls
X ð0Þ ¼

jf0; 1; 2g \ f2; 4; 5gj
jf0; 1; 2gj ¼ 1=3; ls

X ð3Þ ¼ 0;

ls
X ð1Þ ¼ 1=3; ls

X ð4Þ ¼ 2=3;

ls
X ð2Þ ¼ 1; ls

X ð5Þ ¼ 1=2:

In the case of infinite universe, this membership function can be use for spaces

having locally finite neighborhood systems in the sense that there are only finitely

many minimal neighborhoods for each point.
Rough membership functions allow us to express fuzzy theory in topological

spaces: Let X � U be a subset, we define a fuzzy set by using the rough membership

function of topological spaces

X� ¼ f x; ls
X ðxÞ

� �
: 8x 2 Ug:

From the above example, we find that: if x={2,4,5}.

Then X� ¼ fð0; 1=3Þ; ð1; 1=3Þ; ð2; 1Þ; ð3; 0Þ; ð4; 2=3Þ; ð5; 1=2Þg.
4. Rough set theory in the topology of binary relation

As we have pointed out earlier that Lin introduced the formalism of neighbor-

hood system to handle such general situations. We will consider the topology gener-

ated from the binary relation R. If U is a finite universe and R is a binary relation on

U, then we define, right neighborhood

xR ¼ fy : xRyg
We should note that xR is a right neighborhood of x, but xR is not necessary a

right neighborhood of any element in xR. In fact, the set of all elements, each of

which has xR as its right neighborhood, is called the center of xR. The collections

of all centers form a partition of U; see [8] for details.

We will not consider right neighborhood system (T.Y. Lin skips the word right), we

will consider the topology generated by right neighborhoods. Taking such view xR is

an open set, which is a neighborhood (in the sense of topological space) of each of its

points. To construct the topology, we consider the family S = {xR: x 2 U} of right

neighborhood as a subbase. Let the induced topology be s. The family S as the subbase
of s will be denoted by SR = {xR: x 2 U}, and we write Sx = {G 2 SR: x 2 G}.

Since all finite intersections of members of a subbase form a base, the notion of

topological rough membership functions can be expressed by subbase:

ls
X ðxÞ ¼

jf\Sxg \ X j
j \ Sxj

; x 2 Sx; Sx 2 S
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Note that this rough membership is very different from rough set theory or Lin�s
rough membership function of right neighborhood. In Lin�s case instead of \Sx, he

will use xR, which is unique; we will report the difference in future work. It may exist

y 2 U and y belongs to more than one Sx as shown in the following example; note

that one of Sx and xR is the same as sets. However, they are different xR is a right
neighborhood and is unique (in the formalism of Lin�s neighborhood system), while

Sx is a set of open neighborhood of x in the topology s.
Example 1. Let U = {0,1,2,3,4,5}, 0R = 1R = {0,1,2}, 2R = 3R = {2,3}, 4R =

{3,4}, 5R = {5} Then S;= {{0,1,2},{2,3},{3,4},{5}} ) b = {{0,1,2,}, {2,3},{3,4},

{5},{2},{3}} ) s = {U,U, {0,1,2},{2,3},{3,4},{5},{2},{3},{0,1,2,3},{0,1,2,3,4},

{0,1,2,5},{2,3,4},{2,3,5}, {3,4,5},{2,5},{3,5},{2,3,4,5}}.

Let X = {0,1,2,3}

) ls
X ð0Þ ¼

jf0; 1; 2g \ f0; 1; 2; 3gk
jf0; 1; 2gj ¼ 1; ls

X ð3Þ ¼ 1;

ls
X ð1Þ ¼ 1; ls

X ð4Þ ¼ 1=2;

ls
X ð2Þ ¼ 1; ls

X ð5Þ ¼ 0:

Then X
�
¼ fð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð4; 1=2Þ; ð5; 0Þg

From rough membership function, we get:

RX ¼ X 
 ¼ f0; 1; 2; 3g; RX ¼ X ¼ f0; 1; 2; 3; 4g;
NEGRðX Þ ¼ f5g; BNRðX Þ ¼ f4g

We can get the interior and closure of X by using the definitions of s-closure and
s-interior without using the membership function as follows: Here are the family F of

all s-closed sets:

F ¼ fU;U ; f3; 4; 5g; f0; 1; 4; 5g; f0; 1; 2; 5g; f0; 1; 2; 3; 4g; f0; 1; 3; 4; 5g;
f0; 1; 2; 4; 5g; f4; 5g; f5g; f3; 4g; f0; 1; 5g; f0; 1; 4g; f0; 1; 2g; f0; 1; 3; 4g;
f0; 1; 2; 4g; f0; 1gg:

So,

X 
 ¼ f0; 1; 2g [ f2; 3g [ f2g [ f3g ¼ f0; 1; 2; 3g;

X ¼ U \ f0; 1; 2; 3; 4g ¼ f0; 1; 2; 3; 4g:
5. Granular structure in the topology of binary relations

The purpose of this section is to investigate the knowledge representations and

processing of binary relations in the style of rough set theory. Let us consider the
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pair, (U,B), where B = {R1,R2, . . . ,Rn} is a family of general binary relations on the

universe U. When B is a family of equivalence relations, Pawlak call it knowledge

base and Lin call the general case binary knowledge base in [8]. As the term ‘‘knowl-

edge base’’ often means something else, Lin begin to use the generic name granular

structure [8,9]. We will use knowledge structure and granular structure inter-
changeably.

Next, we will consider the topological space for each binary relation; we will call it

the topological space of the binary relation (TSB). We denote the base bR that is gen-

erated by the binary relation R. Note that two distinct binary relations R and R 0

may generate the same topology as shown in the following example: Let

U = {0,1,2,3,4,5}, R and R 0 are distinct binary relations, where

R¼ fð0;0Þ; ð0;1Þ; ð0;2Þ; ð1;2Þ; ð1;3Þ; ð2;2Þ; ð2;3Þ; ð3;2Þ; ð3;3Þ; ð4;3Þ; ð4;4Þ; ð5;5Þg

R0 ¼ fð0; 0Þ; ð0; 1Þ; ð0; 2Þ; ð1; 0Þ; ð1; 1Þ; ð1; 2Þ; ð2; 2Þ; ð2; 3Þ; ð3; 3Þ; ð3; 4Þ; ð4; 3Þ;
ð4; 4Þ; ð5; 5Þg

Their (right) neighborhood systems are: (as subbases)

0R ¼ f0; 1; 2g; 1R ¼ 2R ¼ 3R ¼ f2; 3g; 4R ¼ f3; 4g; 5R ¼ f5g;
0R0 ¼ 1R0 ¼ f0; 1; 2g; 2R0 ¼ f2; 3g; 3R0 ¼ 4R0 ¼ f3; 4g; 5R0 ¼ f5g:

These two subbases generated the same base SR = {{0,1,2}, {2,3}, {3,4}, {5}} =

SR 0, hence the same topology sR = sR 0.

Next, we will generalize the notion of reducts to TSB, the topological space of bin-
ary relations.
Definition 1. Let P � B be a subset of B, r 2 P, where B be a class of binary

relations. r is said to be superfluous binary relation in P if:

bP ¼ bðP
frgÞ

The set M is called a minimal reduct of P iff:

(i) bM = b(P).
(ii) bM 5 b(P
{r}), "r 2 M.
The following example illustrates the notion given above.

Example 2. Let U = {1,2,3,4,5}, and the 3 subbases Sr = {{1,2},{2,3,4}, {4,5}},

Sp = {{1,2,3},{3,4}, {5}}, Sq = {{1,2},{3,4},{4,5}}. Then we have a joint subbase

SB ¼ ff1; 2g; f2; 3; 4g; f4; 5g; f1; 2; 3g; f3; 4g; f5gg:
The base is bB = {{1,2},{2},{3},{4},{5}}, Next consider

SðB
rÞ ¼ ff1; 2; 3g; f3; 4g; f5g; f1; 2g; f4; 5gg;
bðB
rÞ ¼ ff1; 2g; f3g; f4g; f5gg;



42 E.F. Lashin et al. / Internat. J. Approx. Reason. 40 (2005) 35–43
SðB
pÞ ¼ ff1; 2g; f2; 3; 4g; f4; 5g; f3; 4gg;
bðB
pÞ ¼ ff1; 2g; f2g; f3; 4g; f4g; f4; 5gg;

SðB
qÞ ¼ ff1; 2g; f2; 3; 4g; f4; 5g; f1; 2; 3g; f3; 4g; f5gg;
bðB
qÞ ¼ ff1; 2g; f2g; f3g; f4g; f5gg ¼ bB:

So we find that q is only superfluous relation in B, and we have

REDðBÞ ¼ fr; pg; COREðBÞ ¼ fr; pg:
6. Conclusions

In this work, we generalize rough set theory in the frameworks of topological

spaces. We believe such generalized rough set theory will be useful in digital topology
[16] as well as biomathematics [17]. Our approach in essence is to topologize infor-

mation tables (also known as information systems). Our theory connects rough sets,

topological spaces, fuzzy sets, and neighborhood systems (binary relations, pre-

topology). This theory brings in all these techniques to information analysis and

knowledge processing. We believe that topological structure is the appropriate

�umbrella�.
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