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White layer thickness prediction in wire-EDM
using CuZn-coated wire electrode – ANFIS
modelling
I. Maher∗1,2 , A. A. D. Sarhan1,3, H. Marashi1, M. M. Barzani1 and M. Hamdi1

Wire cutting electrical discharge machining (WEDM) is a non-traditional technique by which the
required profile is acquired using spark energy. Concerning wire cutting, precision machining is
necessary to achieve high product quality. White layer thickness (WLT) is one of the most
important factors for evaluating surface quality. Furthermore, WLT is among the most critical
constraints in cutting parameters selection in WEDM. In this research, the adaptive neuro-fuzzy
inference system (ANFIS) was used to predict the WLT in WEDM using a coated wire electrode.
Experimental runs were conducted to validate the ANFIS model. The predicted data were
compared with measured values, and the average prediction error for WLT was 2.61%. Based
on the ANFIS model, minimum WLT is achieved at the lowest levels of peak current and pulse
on-time with high level of pulse off-time.
Keywords: WEDM, WLT, Neuro-fuzzy, Surface quality, Spark energy, Coated wire, HAZ

Introduction
Wire electrical discharge machining (WEDM) is among
the more widely known and applied non-traditional
machining processes in industry today. WEDM can
machine harder, corrosion resistant, wear resistant and
difficult-to-machine materials such as tool steel, titanium
alloys, metal matrix composites and cemented carbides.1

In addition, some WEDM work has also been reported
on insulating ceramics and non-conductive materials.2,3

With WEDM, it is also possible to machine complicated
shapes that cannot otherwise be achieved using tra-
ditional machining processes, such as turning, milling
and grinding.4,5

Surface quality is the most important performance par-
ameter in WEDM which is expressed through surface
roughness and WLT. In the WEDM process, WLT
plays a vital role on the operational characteristics of
the part (e.g. fatigue, corrosion, creep life, fracture resist-
ance, surface friction and coating ability).

The white layer is the layer that has been heated to the
melting point, but not quite hot enough to be ejected into
the gap between the wire electrode and workpiece and be
flushed away. The WEDM process has actually changed
the metallurgical structure and characteristics in this
layer as it is formed by the unejected molten metal

being rapidly cooled by the dielectric fluid during the
flushing process and resolidifying in the cavity. This
layer does include some expelled particles that have soli-
dified and been re-deposited on the surface before being
flushed out of the gap. The white layer is densely infil-
trated with carbon to the point that its structure is defi-
nitely different to that of the base material. This carbon
enrichment occurs when the hydrocarbons of the elec-
trode and dielectric fluid break down during the
WEDM process and penetrate into the white layer
while the material is essentially in its molten state.
Levy and Maggi6 showed that during WEDM, a thin

heat-affected zone thickness of 1 μm at 5 μJ spark energy
to 25 μm at high spark energy is shaped. Moreover, the
zone under the machined surface will be annealed produ-
cing the white layer. The WLT is proportionate to the dis-
charge energy in the WEDM machining process. It is
almost 50 μm for finish machining to around 200 μm
for high cutting speed.7,8

To achieve low WLT value, the part must be machined
more than once. Therefore, the desired WLT is usually
specified, and proper processes are selected to reach the
desired quality.7 Actual WLT monitoring can be accom-
plished either by intensive post-process inspection or apre-
diction system. Although post-process inspection is the
easiest to implement, it cannot prevent the parts from
being processed before a defective batch is discovered.
Moreover, WEDM is a complex machining process
controlled by many process parameters. Any slight vari-
ations in one of the process parameters can affect the
WLT. Themost effectivemachining strategy is determined
by identifying the different factors affecting the WEDM
process, and seeking the different methods of obtaining
the best machining condition and performance.9,10
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Ultimately, the WLT prediction system can be used to
obtain the best machining conditions and to determine
the WLT indirectly.11,12

To achieve an efficient machining, prediction model-
ling between input WEDM parameters and output per-
formance characteristics should be available. Soft
computing techniques (fuzzy, neural network, adaptive
neuro-fuzzy inference system (ANFIS), etc.) are useful
when exact mathematical information is not available.
In contrast to traditional computing, these techniques
suffer from approximation, partial truth, met heuristics,
uncertainty and inaccuracy. ANFIS is one of the soft
computing techniques that play an important role in
input–output parameter relationship modelling.13,14

Maher et al.15,16 used the ANFIS technique to predict
the surface roughness for intelligent machining with aver-
age accuracy of 96.65 and 94%, respectively. ANFIS was
also used to develop a prediction model of the WLT and
the average surface roughness achieved as a function of
the process parameters in WEDM.17,18

Hence, the aim of this work is to obtain best machining
parameters (pulse on-time, pulse off-time, peak current,
wire tension and wire speed) to minimise WLT of AISI
1050 carbon steel in WEDM. ANFIS prediction model-
ling was used to accomplish this objective.

Experimental work
Experimental design
The design of experiment (DOE) is one of the most
powerful tools for experimental planning. It can be used
as a great leverage to reduce experimental design changes
and design cost as well as increase design process speed by
using statistical methods. The Taguchi method is a most
important DOE that provides a simple, systematic and
efficient approach to determine the optimum process par-
ameters. The Taguchi method applies an orthogonal
array DOEs and selects a large number of control factors
with a reduced number of experiments. In this array, the
control factor matrix ensures a balanced contrast between
the level and independent distribution among par-
ameters.19 The Taguchi L18 orthogonal array was
selected because of the four machining variables with
three levels and one machining variable with two levels,
as shown in Table 1.

The machining parameters including peak current (IP),
pulse on-time (Ton), pulse off-time (Toff), wire speed (WS)
and wire tension (WT) were chosen in this study to inves-
tigate the effect on machining performance including
WLT. The machining parameters’ levels were chosen
according to previous experiments with the working
range and levels of the WEDM process parameters by
using the one-factor-at-a-time approach. The 18

experiments were arranged with combinations of each
level and control factor in an orthogonal array matrix
assigned using MINITAB 15 software, as shown in
Table 2. The other machining parameters were kept con-
stant as a fixed value during experiments as rec-
ommended by the machine maker to optimise the
process such as gap voltage = 20 V; flush pressure = 14
kgf cm−2; and water resistivity = 6 × 104 Ω cm.

Experimental set-up
The experiments were performed using a computer
numerical control Sodick A500W WEDM machine
tool. Coated wire electrode (Brass wire core (60/40)
coated with 5 µm of CuZn alloy (30/70)) with tensile
strength of 875 N mm−2, diameter of 0.2 mm, elongation
of 0.2 and electrical conductivity of 20% ICAS (delivered
by Sunrox EDM supplier) was used for machining blocks
of AISI 1050 carbon steel under specific machining con-
ditions (Table 1).

Sample preparation
The workpiece material (AISI 1050 carbon steel with
100 × 100 × 20 mm dimensions) was machined into 5 ×
5 × 20 mm for each specimen. The chemical composition
was achieved by EDX analysis and is given in Table 3.
The electrical resistivity and thermal conductivity of
AISI 1050 carbon steel were taken as 1.63 × 10−5Ω cm
and 49.8 W (m K)−1, respectively.
The samples were ground using 120 SiC abrasives for

stock removal requirements. Once planarity and the
area of interest were obtained, a standard grit silicon car-
bide paper P220 (30 s), P360 (30 s), P800 (30 s), P1200
(60 s), P2400 (90 s), P4000 (120 s), with pressure of
around 10 N, counter rotation of 400 rev min−1 and

Table 1 Levels of machining parameters

Machining
parameter Symbol Units

Levels

1 2 3

Peak current IP A 16 17 –

Pulse on time Ton µs 0.2 0.3 0.4
Pulse off time Toff µs 0.5 0.9 1.3
Wire tension WT G 350 600 1050
Wire speed WS m min−1 3 7 11

Table 2 Combination of parameters of the mixed orthogonal
array L18 experimental plan

Exp. no.

Parameters’ combination

IP Ton Toff WT WS

1 1 1 1 1 1
2 1 1 2 2 2
3 1 1 3 3 3
4 1 2 1 1 2
5 1 2 2 2 3
6 1 2 3 3 1
7 1 3 1 2 1
8 1 3 2 3 2
9 1 3 3 1 3
10 2 1 1 3 3
11 2 1 2 1 1
12 2 1 3 2 2
13 2 2 1 2 3
14 2 2 2 3 1
15 2 2 3 1 2
16 2 3 1 3 2
17 2 3 2 1 3
18 2 3 3 2 1

Table 3 Elemental analysis of AISI 1050 carbon steel by EDX

Element C Mn P S Fe

% 0.54 0.69 0.03 0.04 98.7
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plenty of coolant water were applied. The samples were
cleaned in ethanol using an ultrasonic agitator between
the steps at 30°C for 15 min. Then the samples were
roughly polished using 6 and 3 µm diamond suspension
liquid with pressure of 6 N and 5 min counter rotation
of 400 rev min−1. The process was repeated until the sur-
face was smooth (checked with optical microscope (OM),
interference contrast mode). Finally, 0.05 µm alumina
suspension liquid, with pressure 5 N, was used for final
polishing with 400 rev min−1 counter rotation for 5 min.
The final polishing process was repeated until the micro-
structure was clearly visible (checked with OM). Then the
sample surfaces were washed with distilled water, flushed
with ethanol and dried with a hair dryer. The samples
were then cleaned in an ultrasonic agitator in acetone at
30°C for 15 min, carefully rinsed and cleaned in ethanol,
and dried to remove contamination so as to acquire a uni-
form surface.20 All materials and reagents used in sample
preparation were provided by the surface laboratory, Fac-
ulty of Engineering, University of Malaya.

Surface characterisation
Microscopic surface examinations after each grinding
and finishing step were carried out using Olympus BX
61 light OM. A scanning electron microscope (SEM)
equipped with energy-dispersive X-ray spectroscopy
(Hitachi tabletop microscope TM3030) was used to
examine the surface microstructural and topographical
characteristics and WLT of the machined part.

Experimental results and ANFIS
modelling
Experimental results
The average WLT was calculated for three different
measurements at three different places using an image
processing programme (ImageJ) as shown in Fig. 1. Eigh-
teen sets of data were used based on DOEs for building
and training the ANFIS model, as shown in Table 4. As
shown in Table 4, the standard deviations (S) for all
samples are small, meaning the measured values tend to
be close to their mean. The other four sets were used
for testing, once training was completed, to verify the
accuracy of the predicted WLT values.

ANFIS model construction
The neuro-fuzzy system combines the advantage of fuzzy
systems which deal with explicit knowledge that can be
explained and understood, with neural networks which
deal with implicit knowledge that can be acquired only
through learning.21 To enable a system to deal with cog-
nitive uncertainties in a manner more like humans, one
may incorporate the concept of fuzzy logic into the neural
networks.
ANFIS was constructed through MATLAB, and 18

readings comprised the training data set as listed in
Table 4. Two membership functions of peak current and
three membership functions of the other parameters
(pulse on-time, pulse off-time, wire speed and wire ten-
sion) were chosen for creating the ANFIS model. The

1 Measurement of WLT (SEM micrograph of sample No. 18)

Table 4 Measured WLT/µm at different machining conditions

Machining parameters Performance characteristics

IP/A Ton/µs Toff/µs WT/g WS/m min−1

WLT/µm

1 2 3 S Avg.

16 0.2 0.5 350 3 7.93 8.39 9.01 0.542 8.44
0.9 600 7 7.34 6.95 6.47 0.436 6.92
1.3 1050 11 5.72 5.1 5.67 0.344 5.50

0.3 0.5 350 7 15.79 15.88 14.84 0.576 15.50
0.9 600 11 13.67 13.91 12.93 0.511 13.50
1.3 1050 3 10.72 11.58 10.79 0.478 11.03

0.4 0.5 600 3 21.5 19.79 21.18 0.909 20.82
0.9 1050 7 19.47 18.53 17.53 0.970 18.51
1.3 350 11 16.32 15.91 16.18 0.208 16.14

17 0.2 0.5 1050 11 11.74 12.53 11.03 0.750 11.77
0.9 350 3 10.88 11 10.27 0.391 10.72
1.3 600 7 8.68 9.88 9.97 0.720 9.51

0.3 0.5 600 11 17.82 17.38 16.79 0.517 17.33
0.9 1050 3 15.13 14.26 15.79 0.767 15.06
1.3 350 7 13.62 12.53 13.24 0.553 13.13

0.4 0.5 1050 7 23.24 22.68 23.82 0.570 23.25
0.9 350 11 20.24 19.15 20.59 0.751 19.99
1.3 600 3 17.32 18.65 18.82 0.821 18.26
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generalised bell membership function (gbellmf) was
adopted for the ANFIS training process in this study.
The fuzzy rule architecture of ANFIS when gbellmf is
adopted consists of 18 fuzzy rules generated from the
input–output data set based on the Sugeno fuzzy
model. During training, the 18 performance measure
values were used to conduct 50 cycles of learning with
an average error of 1.44 × 10−5.

ANFIS uses five network layers to build the model. To
explain this model simply, we have assumed only two
rules, and two linguistic values for each input variable
as shown in Fig. 2.

Layer 1: The output of this layer is the degree to which
the given input satisfies the linguistic label associated with
this node. Generalised bell-shaped membership functions
(gbellmf) are normally used to denote the linguistic terms
because the relationship between the cutting parameters
and WLT in WEDM is not linear, as shown in Fig. 3a.
A generalised bell membership function is specified by
three parameters (a, b, c) as shown in equations (1) and
(2). The parameter b is usually positive and used to con-
trol the slope of the crossover point. Moreover, par-
ameters a and c control the centre and width of the
membership function.

Ai(x) = 1

1+ x− ci1
i1

∣∣∣∣
∣∣∣∣
2bi1

(1)

Bi(y) = 1

1+ y− ci2
ai2

∣∣∣∣
∣∣∣∣
2bi2

(2)

where (ai1, ai2, bi1, bi2, ci1, ci2) is the parameter set.

When the values of the parameter set change, the bell-
shaped functions differ consequently (Fig. 3b), thus dis-
playing several forms of membership functions on lin-
guistic labels Ai, and Bi.
Layer 2: Each neuron in this layer computes the firing

strength of the associated rule. The outputs of the top and
bottom nodes are as follows:

a1 = A1(x)× B1(y) = A1(x) ^ B1(y) (3)

a2 = A2(x)× B2(y) = A2(x) ^ B2(y) (4)

Both nodes in this layer are labelled by T, because we
can choose other t-norms for modelling the logical and
operator. The nodes of this layer are called rule nodes.
Layer 3: Each neuron in this layer computes the nor-

malisation of the firing levels. The outputs of the top
and bottom neurons are the normalised firing level of
the first and second rules, respectively.

b1 =
a1

a1 + a2
(5)

b2 =
a2

a1 + a2
(6)

Layer 4: Each neuron in this layer computes the pro-
duct of the normalised firing levels with the outputs of
an individual associated rule.

b1Z1 = b1(a1x+ b1y) (7)

b2Z2 = b2(a2x+ b2y) (8)

Layer 5: The neuron in this layer computes the sum of
all incoming values.

Z = b1Z1 + b2Z2 (9)

2 ANFIS architecture for the two-input Sugeno fuzzy model

3 Initial and final membership functions of pulse on-time, a initial membership function, b final membership function after
training

Transactions of the IMF 2016 VOL 94 NO 4 207

Maher et al. White layer thickness prediction in wire-EDM using CuZn-coated wire electrode

D
ow

nl
oa

de
d 

by
 [

Ib
ra

he
m

 S
ol

ta
n]

 a
t 0

4:
41

 1
3 

Ju
ly

 2
01

6 



If a crisp training set ((xk, yk), k = 1,… ,K ) is given,
then the parameters of the hybrid neural net can be
learned by descent-type methods. The error function for
pattern k is given by

Ek = (Ok − Zk)2 (10)

where Ok is the desired output and Zk is the calculated
output by the neural network.

ANFIS model verification
Four random readings were used as the testing data
set. The measured WLT values vs. predicted values
using the ANFIS model are given in Table 5. The
plot of four measured WLT values vs. predicted values
using the ANFIS model is shown in Fig. 4. This
figure presents a comparison of the measured and
predicted WLT of AISI 1050 carbon steel using the
coated wire electrode. Appropriate assent is evident
between the measured and predicted values. This close
assent obviously displays that the ANFIS models
can be used to predict and optimise the WLT under
consideration.
To evaluate the fuzzy model, the percentage error Ei

and average percentage error Eav defined in equations

Table 5 The measured vs. predicted WLT of the testing data set

Machining parameters WLT

IP/A Ton/µs Toff/µs WT/g WS/m min−1 Measured Predicted (ANFIS) Error/%

16 0.25 0.7 475 5 13.63 13.4 1.69
0.35 1.1 825 9 16.8 16.4 2.38

17 0.25 0.7 475 5 12.72 11.8 7.23
0.35 1.1 825 9 17.86 17.8 0.34

Average percentage error/% 2.91

4 Comparison of measured and predicted WLT of the test-
ing data set

5 The modelled WLT by ANFIS in relation to cutting parameters change, aWLT in relation to change of pulse on-time and peak
current, b WLT in relation to change of pulse on-time and pulse off-time and c WLT in relation to change of wire tension and
wire speed.
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(11) and (12), respectively, were used.

Ei = |Tm − Tp|
Tm

× 100 (11)

Eav = 1
m

∑m

i=1

Ei (12)

where Tm is the measuredWLT; Tp is the predicted value;
and i = 1,2,3,4 is the sample number.

The obtained average percentage error is 2.91% (Table
5). The low error level signifies that the WLT results pre-
dicted by ANFIS are very close to the actual experimen-
tal results. The error values mean that the proposed model
can predict and optimise the WLT satisfactorily.

ANFIS model results and discussion
Figure 5 introduces the modelled WLT by ANFIS in
relation to change in cutting parameters. It is clear from
the figure that the peak current, pulse on-time and pulse
off-time have a great effect on WLT but the wire tension
and speed have a minor effect on the WLT. Figure 5a and
b shows that the WLT increases with increasing peak cur-
rent and pulse on-time but decreases with increasing pulse
off-time. Moreover, WLT slightly decreases with increas-
ing wire tension and speed as shown in Fig. 5c. This is
because the combination of pulse on-time and peak cur-
rent determine the spark energy (equation (13))7 and
hence the amount of heat required to melt or evaporate
the workpiece surface.

Es = IP× V × Ton (13)

where Es is the spark energy and V is the spark gap set
voltage.

Figure 6a and b introduces SEMmicrographs at 2000×
magnification of the white layer for sample numbers 3 and
16, respectively. These micrographs verify that the maxi-
mum width of the white layer is at the highest levels of
peak current, pulse on-time and the lowest level of
pulse off-time. This is because the heat energy increases
with peak current and pulse on-time. In addition, the
number of pulses increases with decreasing pulse off-
time. Hence, greater heat is produced on the machined
surface and leads to greater WLT on the workpiece.

Based on ANFIS modelling, using low peak current
and pulse on-time with high pulse off-time yields the
best conditions for better cutting and low WLT.

Conclusion
ANFIS were used to develop an empirical model for
predicting the WLT in WEDM. Pulse on-time, pulse
off-time, peak current, wire speed and wire tension
were used as predictor variables. Eighteen measured
WLT values, under different cutting conditions, were
used as a training data set to build the ANFIS model
and four values were used as a testing data set. The
model was verified with test data where the average
errors were 2.61%. These results indicate that the
ANFIS model with gbellmf is accurate and can be
used to predict WLT in WEDM. The ANFIS model
shows the peak current, pulse on-time and pulse off-
time are the most significant parameters affecting the
WLT. The wire tension and wire speed have a minor
effect on the WLT. The ANFIS model shows that mini-
mum WLT is achieved at the lowest levels of peak cur-
rent and pulse width with the highest level of pulse off-
time.
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