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Summary: In reliability analysis, it is quite common that the failure

of any individual or any item may be attributable to more than one cause.

Moreover, the observed data are often censored. A hybrid censoring scheme

which is a mixture of conventional Type I and Type II censoring schemes

is quite useful in life-testing or reliability experiments. Recently Type II

progressive censoring schemes have become quite popular for analysing highly

reliable data. However, in that case the duration of the experiment can be

quite lengthy. Hence, in this paper we introduce a Type II progressively

hybrid censoring scheme with random removals, where the number of units

removed at each failure time follows a binomial distribution and the experiment

terminates at a prespecified time. We derive the likelihood inference and

Bayes procedures of the unknown parameters under the assumptions that the

lifetime distributions of the different causes are independent and exponentiated

exponentially distributed.
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1. Introduction

In life-testing and reliability studies, the experimenter may not always obtain

complete information on failure times for all experimental units. Data obtained

from such experiments are called censored data. Saving time on testing and

the associated costs are some of the major reasons for censoring. A censoring

scheme which can balance between (I) total time spent on the experiment; (II)

number of units used in the experiment; and (III) the efficiency of statistical

inference based on the results of the experiment, is desirable. The most

common censoring schemes are Type I (Time) censoring, where the life-testing

experiment will be terminated at a fixed time T; and Type II (Item) censoring,

where the life-testing experiment will be terminated as soon as the r-th (r is

fixed beforehand) failure is observed. However, the conventional Type I and

Type II censoring schemes do not have the flexibility of allowing removal of

units at points other than the terminal point of the experiment. For this reason a

more general censoring scheme called progressive Type II right censoring was

introduced. It can be briefly described as follows: Consider an experiment

in which n units are placed on a life-test. At the time of the first failure,

R1 units are randomly removed from the remaining n − 1 surviving units.

Similarly, at the time of the second failure, R2 units from the remaining

n − 2 − R1 units are randomly removed. The test continues until the m-th

failure at which time, all the remaining Rm = n−m−R1−R2− ...−Rm−1
units are removed.

Many authors have discussed the maximum likelihood estimation of

unknown parameters of some lifetime distribution under progressive censoring

with fixed removal. Papers adopting a random removal scheme are relatively

rare. Yuen and Tse (1996) indicated that, for example, the number of patients
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that drop out of a clinical test at each stage is random and cannot be pre-

determined. In some reliability experiments, an experimenter may decide

that it is inappropriate or too dangerous to carry on the testing on some of

the tested units even though these units have not failed. In these cases, the

pattern of removal at each failure is random. Wu and Chang (2002) and

(2003) considered the estimation problem based on exponential and Pareto

distributions respectively under a progressive Type II censoring scheme with

random removal. In these works, the number of units removed from the test at

each failure time is assumed to be random.

The main difference between fixed removals and progressive random

removals is that the removals are pre-determined in the former case while they

are random in the latter case. Note that m is pre-determined in both cases.

The mixture of Type I and Type II censoring schemes is known as the

hybrid censoring scheme. The hybrid censoring scheme was first introduced

by Epstein (1954) and (1960), but has recently become quite popular in

reliability and life-testing experiments, see for example the work of Chen

and Bhattacharya (1988), Childs et al. (2003), Draper and Guttman (1987),

Fairbanks, Madasan and Dykstra (1982), Gupta and Kundu (1998) and Jeong,

Park and Yum (1996). One of the drawbacks of the conventional Type I, Type

II or hybrid censoring schemes is that they do not allow for removal of units at

points other than the terminal point of the experiment. One censoring scheme

known as Type II progressive censoring scheme, which has this advantage, has

becomes very popular in the last few years. It can be described as follows:

Consider n units in a study and suppose m < n is fixed before the

experiment. Moreover, m other integers, R1, ..., Rm are also fixed before so

that R1+ ...+ Rm+m = n. At the time of the first failure, say X1;m;n, R1

of the remaining units are randomly removed. Similarly, at the time of the
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second failure, say X2;m;n, R2 of the remaining units are randomly removed

and so on. Finally, at the time of the m-th failure, say Xm;m;n, the rest of the

Rm units are removed. For further details on Type II progressive censoring

and for its different advantages, the readers may refer to the recent excellent

monograph of Balakrishnan and Aggarwala (2000).

The rest of this paper is organised as follows. Section 2 presents

the progressively hybrid Type II censored with binomial removals and the

likelihood function. Maximum likelihood and Bayes procedures are discussed

in Section 3 and Section 4 respectively. Monte Carlo simulations are presented

in Section 5 and finally we conclude the paper in section 6.

2. Model description

The probability density function and of the exponentiated exponential

distribution with two parameters λ and θ and cumulative distribution

function, introduced by Gupta et al. (1998) and

f (x; θ, λ) = θλe−λx
(
1− e−λx

)θ−1
,

F (x; θ, λ) =
[
1− e−λx

]θ
(2.1)

respectively. By setting θ = 1 the functions given in (2.1) reduce to the

probability density and cumulative distribution functions of the exponential

distribution, i.e.,

f (x; λ) = λe−λx

and

F (x; λ) = 1− e−λx (2.2)

respectively.

Now, suppose n identical items are tested and the lifetime distributions of

the n items are denoted by X1, ..., Xn. The integer m < n is fixed at the

beginning of the experiment, and R1, ..., Rm are m fixed integers satisfying
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R1 + ...+ Rm +m = n. The time point T is also fixed beforehand. At the

time of first failure X1;m;n, R1 of the remaining units are randomly removed.

Similarly at the time of the second failure X2;m;n, R2 of the remaining units

are removed and so on. If the m-th failure Xm;m;n occurs before the time

point T , the experiment stops at the time point Xm;m;n. On the other hand

suppose the m-th failure does not occur before time point T and only J

failures occur before the time point T , where 0 ≤ J < m, then at the

time point T all the remaining R∗J units are removed and the experiment

terminates at the time point T , where R∗J = n− (R1 + ...+ RJ − J). We

denote the two cases as Case I and Case II respectively and call this censoring

scheme as the Type II progressively hybrid censoring scheme. Therefore, in

presence of Type II progressively hybrid censoring scheme, we have one of the

following types of observations:

Case I: {X1;m;n, ...Xm;m;n} if Xm;m;n < T (2.3)

or

Case II: {X1;m;n, ...XJ;m;n} if XJ;m;n < T < XJ+1;m;n (2.4)

Note that for Case II, XJ;m;n < T < XJ+1;m;n < ... < Xm;m;n and

XJ+1;m;n < ... < Xm;m;n are not observed see Kundu and Joarder (2006).

Suppose that any test unit being dropped out from the life test is independent

of the others but with the same removal probability π. Then Tse et al.

(2000) indicated that the number of test units removed at each failure time

has a binomial distribution.

Under random removal, suppose that ri is a random variable which is

independent of Xi; the joint likelihood function of Type II progressively

hybrid censoring scheme will be

Case I: L (X, R; θ, λ) = L1 (X; θ, λ \ R) .P (R \ Xm;m;n < T )
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where

L1 (X; θ, λ \ R) =
m∏
i=1

f
(
x(i); θ, λ

) [
1− F

(
x(i); θ, λ

)]ri
(2.5)

and P (R \ Xm;m;n < T ) is the joint probability distribution of removals

defined as

P (R \ Xm;m;n < T ) =
(n−m)!

m∏
i=1

ri!
(
n−m−

∑m−1
j=1 rj

)
!

· π
∑m−1

j=1
rj (1− π)(m−1)(n−m)−

∑m−1
j=1 (m−j)rj

(2.6)

or

Case II: L (X, R; θ, λ) = L2 (X; θ, λ\R) .P (R\XJ;m;n < T < XJ+1;m;n)

where

L2 (X; θ, λ\R) =
J∏
i=1

f
(
x(i); θ, λ

) [
1− F

(
x(i); θ, λ

)]ri
[1− F (T ; θ, λ)]R

∗
J

(2.7)

and P (R \ XJ;m;n < T < XJ+1;m;n) is the joint probability distribution of

removals defined as

P (R \ XJ;m;n < T < XJ+1;m;n)

=
(n− J)!

J∏
i=1

ri!
(
n− J −

∑J−1
j=1 rj

)
!

π

∑J−1
j=1

rj (1− π)(J−1)(n−J)−
∑J−1
j=1 (J−j)rj

(2.8)

since P (R) in both cases does not involve the parameters θ and λ.

3. Maximum likelihood estimators

This section discusses the process of obtaining the maximum likelihood

estimates of the parameters θ, λ and π based on progressively hybrid
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censored data with binomial random removals. Both point and interval

estimations of the parameters are derived. Based on observations (2.3) and

(2.4), the log-likelihood function (without the constant term) can be written

as

logL1 (X
′θ, λ \ R) = m log θ +m log λ− λ

m∑
i=1

x(i)

Case I: +(θ − 1)
m∑
i=1

log
(
1− e−λx(i)

)
+

m∑
i=1

r
i log

[
1−
(
1−e−λx(i)

)θ]
(3.1)

and

logL (R \ Xm;m;n < T ) =

m−1∑
j=1

rj log π + (m− 1) (n−m)

−
m−1∑
j=1

(m− j) rj log (1− π) .

The first partial derivative of logL1 (X; θ, λ \ R) with respect to θ, λ are

∂ logL1 (X; θ, λ \ R)
∂θ

=
m

θ
+

m∑
i=1

log
(
1− e−λx(i)

)
−

m∑
i=1

ri

(
1− e−λx(i)

)θ
log
(
1− e−λx(i)

)[
1−

(
1− e−λx(i)

)θ]
∂ logL1 (X; θ, λ \ R)

∂λ
=

m

λ
−

m∑
i=1

x(i) + (θ − 1)
m∑
i=1

x(i)e
−λx(i)(

1− e−λx(i)
)

−θ
m∑
i=1

ri
x(i)e

−λx(i)
(
1− e−λx(i)

)θ−1[
1−

(
1− e−λx(i)

)θ]
Thus, the maximum likelihood estimates θ̂ and λ̂ can be obtained by

simultaneously solving the above equations once they have been set equal to
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zero, that is, by

θ̂ =
m

m∑
i=1

ri

(
1−eλ̂x(i)

)θ̂
[
1−
(
1−e−λ̂x(i)

)θ̂] − m∑
i=1

log
(
1− e−λ̂x(i)

)
(3.2)

λ̂ =
m

m∑
i=1

x(i)

1− (θ̂ − 1) e
−λ̂x(i)(

1−e−λ̂x(i)
) + θ̂ri e

−λ̂x(i)
(
1−e−λ̂x(i)

)θ−1
[
1−
(
1−e−λ̂x(i)

)θ̂]

.

(3.3)

Similarly, the first partial derivative of logL (R \ Xm;m;n < T ) with respect

to π is

∂ logL (R\Xm;m;n<T )

∂π
=

∑m−1
j=1 rj

π
−
(m−1) (n−m)−

∑m−1
j=1 (m−j) rj

(1− π)

By setting ∂ logL (R \ Xm;m;n < T ) /∂π = 0, we get the likelihood

equation for π. Solving the equation obtained with respect to π, we get

the maximum likelihood estimator of π in the following form

π̂ =

∑m−1
j=1 rj

(m− 1) (n−m)−
∑m−1
j=1 (m− 1− j) rj

(3.4)
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logL2 (X; θ, λ \ R) = J log θ + J log λ− λ
j∑
i=1

x(i).

Case II: +(θ − 1)
j∑
i=1

log
(
1− e−λx(i)

)
+

j∑
i=1

ri log
[
1−

(
1− e−λx(i)

)θ]
+R∗j log

[
1−

(
1− e−λT

)θ]
(3.5)

and

P (R \ XJ;m;n < T < XJ+1;m;n) =

J−1∑
j=1

rj log π + (J − 1) (n− J)

−
J−1∑
i=1

(J − j) rj log (1− π) .

Similarly, the first partial derivative of logL2 (X; θ, λ \ R) with respect to

θ, λ are

∂ logL2 (X; θ, λ \ R)
∂θ

=
J

θ
+

J∑
i=1

log
(
1− e−λx(i)

)
+

J∑
i=1

ri

(
1− e−λx(i)

)θ
log
(
1− e−λ(i)

)[
1−

(
1− e−λx(i)

)θ]
−R∗J

(
1− e−λT

)θ
log
(
1− e−λT

)[
1− (1− e−λT )θ

]
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∂ logL2 (X; θ, λ \ R)
∂λ

=
J

λ
−

J∑
i=1

x(i) + (θ − 1)
J∑
i=1

x
(i)e

−λx(i)(
1− e−λx(i)

)
−θ

J∑
i=1

ri
x(i)e

−λx(i)
(
1− e−λx(i)

)θ−1[
1−

(
1− e−λx(i)

)θ]
−TθR∗J

e−λT
(
1− e−λT

)θ−1[
1− (1− e−λT )θ

] .

Therefore, the maximum likelihood estimates θ̂ and λ̂ can be obtained

by simultaneously solving the above equations once they have been set equal

to zero,

θ̂=
J

−
J∑
i=1

ri

(
1−e−λ̂x(i)

)̂θ
log

(
1−e−λ̂x(i)

)
[
1−
(
1−e−λ̂x(i)

)θ̂] +R∗J
(1−e−λT )θlog(1−e−λT )
[1−(1−e−λT )θ]

−
J∑
i=1

log
(
1−e−λ̂x(i)

)
(3.6)

λ̂=
m

m∑
i=1

x(i)

1−(θ̂−1) e
−λ̂x(i)(

1−e−λ̂x(i)
)+θ̂rie

−λ̂x(i)
(
1−e−λ̂x(i)

)θ̂−1
[
1−
(
1−e−λ̂x(i)

)̂θ]
+TθR∗Je−λT (1−e−λT)θ−1[1−(1−e−λT )θ]

(3.7)

Similarly, the first partial derivative of logL (R \ XJ+1;m;n) with respect to

π is

∂ logL (R \ XJ;m;n) < T < XJ;1+m;n

∂π

=

∑J−1
j=1 rj

π
−
(J − 1) (n− J)−

∑J−1
j=1 (J − j) rj

(1− π)
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By setting ∂ logL (R \ XJ;m;n < T < XJ+1;m;n) /∂π = 0, we get the

likelihood equation for π. Solving the equation obtained with respect to π,

we get the maximum likelihood estimator of π in the following form

π̂ =

∑J−1
j=1 rj

(J − 1) (n− J)−
∑J−1
j=1 (J − 1− j) rj

. (3.8)

The Fisher information matrix with random removal will be

I
(
λ̂, θ̂, π̂

)
=

 I1

(
λ̂, θ̂
)

0

0 I2 (π̂)


where

I1

(
λ̂, θ̂
)
=

[
I11 I12
I21 I22

]
=

 E
(
∂2L(λ,θ)
∂θ2

)
E
(
−∂

2L(λ,θ)
∂θ∂λ

)
E
(
−∂

2L(λ,θ)
∂θ∂λ

)
E
(
∂2L(λ,θ)
∂λ2

)
 λ= λ̂

θ= θ̂

,

I2 (π̂) = E

(
−∂

2 lnL (π)

∂π2

)
π = π̂

,

and

−∂
2 lnP (R)

∂π2
=
1

π2

D−1∑
j=1

rj+
1

(1−π)2

(D − 1) (n−D)− D−1∑
j=1

(D − j) rj

 .
where D = m for Case I and D = J for Case II. The variance-covariance

matrix with random removal may be approximated as

V
(
λ̂, θ̂, π̂

)
=

[
V1

(
λ̂, θ̂
)

0

0 V2 (π̂)

]
,

where

V1 =

[
V11 V12
V21 V22

]
=

[
I11 I12
I21 I22

]−1
and

V2 =

[
−∂

2 lnP (R)

∂π2

]−1
.
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It is known that the asymptotic distribution of the maximum likelihood

estimators θ̂, λ̂ and π̂, is given by θ̂

λ̂
π̂

 ∼ N
 θ̂

λ̂
π̂

 , V
(
λ̂, θ̂, π̂,

) . (3.9)

Not that closed form expressions of the expected values of these second order

partial derivatives are not readily available. These terms can be evaluated by

using numerical methods. Furthermore, define V1 = lim
n→∞

nI−11

(
θ̂, λ̂
)

. The

joint asymptotic distribution of the maximum likelihood estimators of θ and λ

is multivariate normal [see Lawless (1982)]. A numerical technique is needed

to obtain the Fisher information matrix and the variance-covariance matrix.

4. Bayes estimators

In this section, we use the Bayes procedure to derive the point and interval

estimates of the parameters θ, λ, and π based on progressively hybrid

censored data with binomial removals. For this purpose, we need the following

additional assumption:

1. The parameters θ, λ and π behave as independent random variables.

2. The random variable λ has an exponential distribution with known

parameter β as a prior distribution. Namely, the prior probability density

function of λ takes the following form

g1 (λ) = βe−βλ β > 0, β > 0.

3. The random variable θ has the following non-informative type of prior

g2 (θ) =
1

c
0 < θ c.

4. π has a beta prior distribution with known parameters a, b. That is, the

prior probability density of function of π is given by

g3 (π) =
1

B (a, b)
πa−1 (1− π)b−1 , 0 < π < 1; a, b > 0.
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5. The joint prior probability density function of λ, θ and π is

g (λ, θ, π) = g1 (λ) g2 (θ) g3 (π) (4.1)

=
βeβλ

cB (a, b)
πa−1 (1− π)b−1 .

6. The loss function is

l
[
(λ, θ, π) ,

(
λ̂, θ̂, π̂

)]
=ε1

(
λ−λ̂

)2
+ε2

(
θ− θ̂

)2
+ε3 (π−π̂)2 ,

ε1, ε2, ε3>0.

Combining (4.1) with the likelihood function (2.5) and combining (2.6) with

the cumulative distribution and probability density functions in (2.1) and using

Bayes’ theorem, the joint posterior distribution in Case I is derived as follows

ω (λ, θ/x, r)

= θmλme
−λ

(
β+

∑m

i=1
x1

)∏m
i=1(1−e−λxi)

θ−1[
1−(1−e−λxi)

θ
]ri

πa
∗−1(1−π)b∗−1

j1

where

a∗ = a+

m−1∑
i=1

ri, b∗ = b+ (m− 1) (n−m)−
m−1∑
j=1

(m− j) rj

and

j1 =
∫ c
0

∫ 1
0

∫∞
0
θmλme−λ(β+

∑m
i=1 xi)

∏m
i=1

(
1− e−λxi

)θ−1
·
[
1−

(
1− e−λxi

)θ]ri
πa

∗−1 (1− π)b
∗−1

dλ dπ dθ.

The marginal posterior of a parameter is obtained by integrating the joint

posterior distribution with respect to other parameters and hence the marginal

posterior of λ, θ and π can be written as

ω (λ / x, r) =
λme−λ(β+

∑m
i=1 xi)j2

j1
(0 < λ <∞)

ω (θ / x, r) =
θmj3
j1

, (0 < θ < c)
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and

ω (π / x, r) =
1

B (a∗, b∗)
πa

∗−1 (1− π)b
∗−1

, (0 < π < 1)

respectively, where

j2
∫ c
0

∫ 1
0
θm
∑m
i=1

(
1−e−λxi

)θ−1 [
1−
(
1−e−λxi

)θ]ri
πa

∗−1 (1−π)b
∗−1

dx dθ,

j3
∫ 1
0

∫∞
0
λme−λ(β+

∑m
i=1 xi)

∏m
j=1

(
1− e−λxi

)θ−1
·
[
1−

(
1− e−λxi

)θ]ri
πa

∗−1 (1− π)b
∗−1

dλ dπ .

Note that the posterior distribution of π is beta with parameters a∗ and b∗.

In the same way, combining (4.1) with likelihood function (2.7), (2.8) with

cumulative function and probability density function (2.1) and using Bayes’

theorem, the joint posterior distribution in Case II is derived as follows

ω (λ, θ, π/x, r)

=
θJλJe

−λ
(
β+

∑J

i=1
xi

)∏J
i=1(1−e

−λxi)
θ−1[

1−(1−e−λxi)
θ
]ri[

1−(1−e−λT )
θ
]r∗Jπa∗−1(1−π)b∗−1

j1

where

a∗ = a+
J−1∑
i=1

ri, b∗ = b+ (J − 1) (n− J)−
J−1∑
i=1

(m− j) rj .

and

j1=
∫ c
0

∫ 1
0

∫∞
0
θJλJe

−λ
(
β+
∑J

i=1
xi
)
J∏
i=1

(
1−e−λxi

)θ−1 [
1−
(
1−e−λxi

)θ]ri
[
1−

(
1− e−λT

)θ]r∗J
πa

∗−1 (1− π)b
∗−1

dλ dπ dθ.

The marginal posterior of a parameter is obtained by integrating the joint

posterior distribution with respect to other parameters and hence the marginal
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posterior of λ, θ and π can be written as

ω (λ / x, r) =
λJe

−λ
(
β+
∑J

i=1
xi
)
j2

j1
,

=
θJj3
j1

,

and

ω (π / x, r) =
1

B (a∗, b∗)
πa

∗−1 (1− π)b
∗−1

, (0 < π < 1)

respectively, where

j2 =
∫ c
0

∫ 1
0
θJ

J∏
i=1

(
1− e−λxi

)θ−1 [
1−

(
1− e−λxi

)θ]ri
·
[
1−

(
1− e−λT

)θ]r∗J
πa

∗−1 (1− π)b
∗−1

dπ dθ,

jJ =
∫ 1
0

∫∞
0
λJe

−λ
(
β+
∑J

i=1
xi
)

J∏
i=1

(
1− e−λxi

)θ−1 [
1−

(
1− e−λi

)θ]ri
·
[
1−

(
1− e−λT

)θ]r∗J
πa

∗−1 (1− π)b
∗−1

dλ dπ.

Under the squared error loss function the Bayes estimators and its

associated minimum posterior risk are the posterior mean and variance,

respectively. Therefore, under assumption (6), the Bayes estimate λ, θ and

π, say λ̃, θ̃ and π̃, and the associated minimum posterior risk, say R
(
λ̃
)

,

R
(
θ̃
)

and R (π̃), are given as follows

λ̃ = E (λ / x) =
∫∞
0
λω (λ / x, r) dλ =

j4
j1
,

R
(
λ̃
)
=
∫∞
0
λ2ω (λ / x, r) dλ−

(
λ̃
)
,

θ̃ = E (θ / x) =
∫∞
0
θω

(
θω (θ / x, r) dθ =

j5
j1

)
,

R
(
θ̃
)
=
∫∞
0
θ2ω (λ / x, r) dθ −

(
θ̃
)
,



164 AFIFY

and

π̃ =
a∗ (a∗ + 1)

(a∗ + b∗ + 1) (a∗ + b∗)
,

R (π̃) =
a∗b∗

(a∗ + b∗ + 1) (a∗ + b∗)
2 .

where

j4 =
∫ c
0

∫ 1
0

∫∞
0
θmλm+1e

−λ
(
β+
∑m

i=1
xi
)
m∏
i=1

(
1− e−λxi

)θ−1
·
[
1−

(
1− e−λxi

)θ]ri
πa

∗−1 (1− π)b
∗−1

dλ dπ dθ

and

j5 =
∫ c
0

∫ 1
0

∫∞
0
θm+1λme

−λ
(
β+

∑m

i=1
xi

)
m∏
i=1

(
1− e−λxi

)θ−1
·
[
1−

(
1− e−λxi

)θ]ri
πa

∗−1 (1− π)b
∗−1

dλ dπ dθ

for Case I, and

j4 =
∫ c
0

∫ 1
0

∫∞
0
θJλJ+1e

−λ
(
β+

∑J

i=1
xi

)
J∏
i=1

(
1− e−λxi

)θ−1
·
[
1−
(
1−e−λxi

)θ]ri [
1−
(
1−e−λT

)θ]r∗J
πa

∗−1 (1−π)b
∗−1

dλ dπ dθ

and

j5 =
∫ c
0

∫ 1
0

∫∞
0
θJ+1λJe

−λ
(
β+

∑J

i=1
xi

)
J∏
i=1

(
1− e−λxi

)θ−1
·
[
1−
(
1−e−λxi

)θ]ri [
1−
(
1−e−λT

)θ]r∗J
πa

∗−1 (1−π)b
∗−1

dλ dπ dθ

for Case II.

Note that: Many special cases can be obtained from results derived in

Sections 3 and 4;
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a. If one uses progressively hybrid censored data with fixed removal and

θ = 1, then the exponential distribution results as special case from

the results by Kundu and Joarder (2006).

b. When all m failures occurs before time point T and θ = 1 then

the results in Sections 3 and 4 reduce to an exponential distribution

under progressively hybrid censored data with random removal.

These results agree with those established by Sarhan and Abuammoh

(2008).

c. Type II censoring is obtained as a special case when ri = 0 for

i = 1, 2, ...,m− 1 and rm = n−m.

d. If ri = 0 for i = 1, 2, ...,m progressively hybrid censored data with

random removal results reduces to complete sample.

5. Simulation results

Since the performance of the different methods cannot be compared

theoretically, we use Monte Carlo simulations to compare different methods

for different parameter values and for different sampling schemes. The use of

different sampling schemes means that different sets of Ri’s were obtained as

binomial random variable and for different T values. All the programs are

written in MATHCAD (13).

Before progressing further, we first describe how we generate Type II

progressively hybrid censored data with binomial random removals. The

following algorithm is followed to obtain these samples.

1. Specify the values of n,m, T.

2. Specify the values of θ, λ and π.

3. Generating a random number r1 from binomial (n−m,π).

4. Generating a random number ri from binomial

(
n−m−

i=1∑
l=1

rl, π

)
for

each i, i = 2, 3, ...,m− 1.
5. Set rm according to the following relation

rm =

{
n−m−

i=1∑
l=1

rl, if n−m−
i=1∑
l=1

rl > 0.

}



166 AFIFY

6. Generate a random sample with size m from an exponentiated exponential

(λ, θ) distribution and sort it.

7. For given n,m,R1, ..., Rm we generate ; If Xm;m;n < T
then we have Case I and the corresponding sample is

{(X1;m;n, R1) , ..., (Xm;m;n, Rm)} . If Xm;m;n > T, then we

have Case II and we find J , such that XJ;m;n < T < XJ+1;m;n. The

corresponding Type II progressively hybrid censored data with binomial

random removals is {(X1;m;n, R1) , ..., (XJ;m;n, RJ)} and R∗j , where

R∗J is defined as before. We consider different n;m;T , and the different

sampling schemes. Without loss of generality we take λ = 1, θ = 2 and

π = 0.3, 0.4 and 0.5 in each case. We compute the estimators using (I)

maximum likelihood estimators (II) Bayes estimators. Note that: There

is no closed form solution to the above equations, and iterative numerical

search can be used to obtain the MLEs from the above likelihood equations

depending on the initial guesses of θ, λ and π which can be chosen as

following

θ̂ =
−m

m∑
i=1

log
(
1− e−λ̂x(i)

) ,
λ̂ =

m

m∑
i=1

x(i)

1− (θ̂ − 1) e
−λx(i)(

1−e−λ̂x(i)
)


and

π̂ =

m−1∑
j=1

rj

(m− 1)
8. The above steps are repeated 1000 times for each sample size and the

values averaged.
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Table 1. Average estimates of θ, λ and π are presented, under the

maximum likelihood estimation for different size and different sampling

schemes

T = 0.5 T = 1.00 T = 2.00

π (n,m) θ̂ λ̂ π̂ θ̂ λ̂ π̂ θ̂ λ̂ π̂

(15,5) 2.92 0.97 0.24 2.16 1.20 0.26 2.39 1.43 0.27

(25,5) 2.63 0.98 0.20 2.07 1.21 0.22 2.11 1.45 0.23

(50,5) 2.35 0.99 0.26 2.59 1.23 0.28 2.02 1.46 0.29

(100,5) 2.07 0.98 0.22 2.30 1.24 0.24 2.54 1.48 0.25

π=0.3 (25,10) 2.78 1.02 0.28 2.22 1.25 0.24 2.25 1.49 0.21

(50,10) 2.50 1.03 0.24 2.73 1.26 0.26 2.26 1.50 0.25

(100,10) 2.34 1.01 0.21 2.58 1.21 0.22 2.82 1.48 0.23

(50,15) 1.78 1.03 0.23 2.81 1.27 0.24 2.29 1.57 0.22

(100,15) 1.66 1.20 0.26 2.90 1.44 0.27 2.84 1.67 0.23

(15,5) 2.96 0.99 0.36 2.25 1.26 0.42 2.41 1.44 0.46

(25,5) 2.68 1.07 0.31 2.08 1.30 0.41 2.18 1.48 0.45

(50,5) 2.36 1.02 0.42 2.68 1.33 0.42 2.03 1.54 0.34

π=0.4 (100,5) 2.15 1.04 0.41 2.38 1.29 0.39 2.56 1.50 0.42

(25,10) 2.78 1.03 0.46 2.30 1.26 0.39 2.26 1.49 0.38

(50,10) 2.54 1.09 0.44 2.75 1.26 0.39 2.32 1.57 0.38

(100,10) 2.38 1.01 0.34 2.61 1.30 0.39 2.88 1.50 0.40

(50,15) 1.87 1.07 0.39 2.89 1.34 0.36 2.31 1.63 0.50

(100,15) 1.67 1.22 0.38 3.00 1.48 0.39 2.85 1.70 0.52

(15,5) 3.00 1.01 0.46 2.35 1.32 0.50 2.42 1.50 0.56

(25,5) 2.78 1.09 0.41 2.16 1.36 0.57 2.21 1.50 0.52

(50,5) 2.42 1.10 0.54 2.70 1.38 0.57 2.12 1.62 0.54

(100,5) 2.24 1.08 0.50 2.46 1.34 0.58 2.64 1.58 0.55

π=0.5 (25,10) 2.81 1.06 0.59 2.38 1.35 0.56 2.32 1.56 0.49

(50,10) 2.63 1.16 0.52 2.79 1.33 0.57 2.40 1.63 0.55

(100.10) 2.43 1.11 0.50 2.69 1.39 0.52 2.91 1.53 0.55

(50,15) 1.90 1.10 0.50 2.94 1.38 0.49 2.40 1.69 0.46

(100,15) 1.71 1.32 0.53 3.01 1.49 0.50 2.90 1.74 0.45
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Table 2. Average estimates of θ, λ and π are presented, under Byes

estimation for different size and different sampling schemes

T =0.5, π=0.3 T =1.00, π=0.3 T =2.00, π=0.3

π (n,m) θ̂ λ̂ π̂ θ̂ λ̂ π̂ θ̂ λ̂ π̂

(15,5) 2.94 1.00 0.29 2.19 1.22 0.29 2.43 1.51 0.33

(25,5) 2.65 1.01 0.25 2.20 1.24 0.25 2.14 1.52 0.29

(50,5) 2.38 1.02 0.31 2.62 1.25 0.31 2.46 1.53 0.35

(100,5) 2.09 1.04 0.27 2.34 1.26 0.27 2.57 1.55 0.31

π=0.3 (25,10) 2.80 1.05 0.33 2.35 1.28 0.27 2.29 1.56 0.27

(50,10) 2.53 1.06 0.29 2.76 1.28 0.29 2.69 1.57 0.31

(100,10) 2.37 1.06 0.26 2.61 1.27 0.25 2.85 1.59 0.29

(50,15) 1.81 1.06 0.28 2.85 1.29 0.27 2.88 1.59 0.28

(100,15) 1.69 1.24 0.31 2.93 1.46 0.30 2.87 1.75 0.29

(15,5) 2.98 1.05 0.46 2.23 1.24 0.47 2.56 1.56 0.48

(25,5) 2.65 1.05 0.36 2.29 1.27 0.35 2.19 1.55 0.45

(50,5) 2.41 1.08 0.42 2.69 1.34 0.46 2.52 1.60 0.46

π=0.4 (100,5) 2.12 1.05 0.39 2.42 1.31 0.39 2.62 1.57 0.43

(25,10) 2.86 1.11 0.49 2.36 1.31 0.37 2.39 1.64 0.37

(50,10) 2.55 1.15 0.41 2.81 1.36 0.42 2.71 1.65 0.45

(100,10) 2.41 1.15 0.46 2.65 1.35 0.42 2.90 1.61 0.46

(50,15) 1.85 1.12 0.47 2.85 1.36 0.46 2.90 1.67 0.43

(100,15) 1.75 1.30 0.46 2.98 1.53 0.48 2.97 1.78 0.46

(15,5) 3.07 1.13 0.59 2.30 1.27 0.65 2.62 1.57 0.66

(25,5) 2.74 1.08 0.50 2.35 1.36 0.51 2.23 1.59 0.55

(50,5) 2.48 1.10 0.56 2.70 1.35 0.63 2.57 1.67 0.59

(100,5) 2.18 1.09 0.57 2.45 1.40 0.57 2.63 1.61 0.55

π=0.5 (25,10) 2.86 1.19 0.66 2.39 1.34 0.53 2.46 1.68 0.54

(50,10) 2.65 1.22 0.56 2.82 1.46 0.53 2.81 1.70 0.63

(100,10) 2.43 1.21 0.64 2.68 1.40 0.60 2.94 1.66 0.64

(50,15) 2.88 1.13 0.57 2.91 1.45 0.57 3.00 1.74 0.62

(100,15) 2.84 1.35 0.61 3.05 1.58 0.63 3.06 1.87 0.66

Note that: The increasing of the removal probability π means more items

are removed, so variance – covariance matrix is decreasing.
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6. Conclusions

This study compares the effect of the removal probability π from a

new censoring scheme, namely the Type II progressively hybrid censoring

with binomial random removal assuming that the lifetime distributions are

Exponentiated Exponentially distributed. Also, we obtain the maximum

likelihood estimators of the unknown parameters. A Bayesian estimate of the

unknown parameters is also proposed and it is observed that the Bayes estimate

with respect to prior works quite well in this case.
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