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Abstract: This paper considers the analysis of exponentiated Weibull family distributed lifetime data

observed under Type I progressive interval censoring with random removals, where the number of units

removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the

parameters and their asymptotic variances are derived. The formula to compute the expected duration is

given. An example is discussed to illustrate the application of results under this censoring scheme.
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INTRODUCTION

 

Progressively Type-I Interval Censoring is a union

of Type-I interval censoring and progressive censoring.

A Progressively Type-I Interval Censored Sample is

collected as follows: n units are put on life test at time

0 1T  = 0. Units are observed at pre-set times T ,

2 m 1 2 mT ,.....T . (m  is also fixed ). At these times, r , r ,.....r

live units are removed from experimentation,

1 2 mrespectively. The values r , r ,......r   may be pre-

specified as percentages of the remaining live units or,

ialternatively, r  units available for removal. In this case,

i ithe number of live units removed at time T  is r  =

imin(r , number of units remaining), I = 1,2,.....,m-1

m mAgain r  equals all remaining units at time T , when

experimentation is scheduled to terminate.

Suppose a progressively Type-I interval censored

sample is collected as described above, beginning with

a random sample of n units with a continuous lifetime

1 2 mdistribution F(x,è) and let k ,k ,......,k  denote the

number of units known to have failed in the intervals,

1 1 2 m-1 m(0, T ], (T ,T ],.....,(T ,T ], respectively. Then, based

on  this  observed  data,  the  joint  likelihood

function will be[1]

where C is constant. 

In many industrial processes, life test is conducted

in order to assess the quality of product. Typically, n

products are placed under test and their times to failure

are observed. These observed lifetimes are then used to

estimate the life distribution of product. However, in

many applications, life tests are usually terminated

before the complete lifetimes of the n products are

observed. This results in a censored test. Data from

this censored test consist of times to failure on failed

units and running times on unfailed units. In these

works, the number of units being removed from the

test at each failure time is assumed to be fixed.

However, in many practical situations, these numbers

may occur at random. For example, the number of

patients drop out from a clinical test at each stage is

random and cannot be predetermined. In some

industrial experiments, an experimenter may decide that

it is inappropriate or too dangerous to carry on the

testing on some of the tested units even though these

units have not failed completely. In these cases, the

pattern of removal at the each failure is random. there

is not any work in the literature which considers the

cases that the number of units being removed at each

failure time is random. Thus, there is a need to

develop models and estimation results to incorporate

the cases with random removals at each failure time. 

The main difference between progressive interval

type I censoring with fixed removal and progressive

interval type I censoring with random removals and

denote it by PICR is that the removals are pre-

determined in the former case while they are random

in the latter case. Note that m  is pre-determined in

both cases. However, many practical applications

suggest that it is more flexible to have removals

random to accommodate the unexpected dropout of

experimental subjects.
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Although progressive censoring occurs frequently

in many applications, there are relatively few works on

it. Some early works can be found in Cohen , Mann ,[3] [6]

Thomas & Wilson , Viveros & Balakrishnan .[10] [13]

Readers can refer to the book Balakrishnan &

Aggarwala  for more details on the methods and[2]

applications of this topic. However, all these works

assumed that the number of units being removed from

the test is fixed in advance. In practice, it is impossible

to pre-determine the removal pattern. Thus,  Yuen &

Tse  and Yang &Yuen  considered the estimation[15] [14]

problem when lifetimes collected under a Type II

progressive censoring with random removals and

Kendell & Anderson  point out that the expected[5]

duration under grouped data.

Model: The probability density function of the

exponentiated W eibull family with two shape

parameters  â and è, and scale parameter á given by

where                                 the corresponding cumulative distribution function is[7]

From equation (2.1), different special distributions can be obtained such as:

1) For, â = 2    the probability density function and distribution function for the exponentiated exponential

distribution introduced by Gupta et al.,  will be[4]

respectively.

2) For â = 2, the two parameter Burr type X distribution with probability density function and distribution

function are given by

respectively.

3) For è = 1 , the  probability  density  function  for  the  Weibull distribution and cumulative distribution

function will be,

respectively.

4) By taking è = 1 and â = 1, the probability density function for the exponential distribution and cumulative

distribution function are given by, 
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respectively.

5) The probability density function and distribution function for the Rayleigh distribution may be obtained by

putting è = 1 and â = 2, that is

Mle with Fixed Removal: Following Aggarwala , using (1.1) and (2.2); the likelihood function under[1]

progressively type-I interval censored with fixed removal will be 

i iThe expression (3.1) is derived conditional on r ; each r  can be of any integer value between 0 and n-m-

1 i-1(r +...+r ). The logarithm of the likelihood function (3.1) will be 

Where

Thus, the maximum likelihood estimates                can  beobtained by maximizing (3.2) with respect to

                ; that is, by simultaneously solving the estimating equations, 

Where

and

Where

and
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Where

and

Again, to solve the system of the non linear equations (3.3),(3.4) and (3.5), restoring to numerical techniques.

The elements of the sample information matrix, for progressively type I interval censored sample will be

Where

and

Where
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and

Where

and

Where

and
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Where

and

Where

and

Therefore the approximate sample information matrix will be

For  large  n,  (n  #  50),  matrix (2.11) is a reasonable approximation to the inverse of the Fisher

information matrix.

Mle with Random Removal: Under random removal, suppose that  is a random variable; the joint likelihood

function of progressive interval type I censored will be

i iwhere r  is independent of X  and P(R) is the joint probability distribution of removals defined as



J. Appl. Sci. Res., 3(12): 1851-1863, 2007

1857

1since P(R) does not involve the parameter è; while L (X; á,â,è \R) is the likelihood function for progressive type

I interval censored with fixed removal defined in (4.1) and in particular, the likelihood function with random

removal will be

The maximum likelihood estimators of                 are found directly by maximizing the logarithm of the

likelihood function in (3.2), since P(R) does note involve the parameters. Therefore, the MLE   of ð can be found

by maximizing P(R) directly, that is,

therefore, the maximum likelihood estimation of parameter   is given by

The Fisher information matrix with random removal will be

Where

and

Numerical technique is needed to obtain the Fisher information matrix and the variance-covariance matrix.

Note that under fixed and random removal the estimates based on intervals with equal length when the

intervals are of equal length, so that monitoring and censoring occur periodically say Ti = i.t.

Special Cases: Many special cases can be obtained from results derived in sections (2) and (3); this section is

concerned with these results. 
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C Progressive Type I Interval Censored Sample for Exponential & Weibull Distribution

If è = 1, Weibull results in the case of progressive interval type I censored may be obtained as special case

from the present results by Rashwan & Darweesh . For Reyleigh distribution and if è = 1, we consider the case[8]

under progressive type I interval censored when the scale parameter â = 2. When the parameters è = 1 and â =

2, results of the present section deduced to exponential under progressive type I interval censored, these results

agree with those established by Aggarwala . [1]

iC Progressive Type I Censoring is obtained as a special case when all k  ` s are fixed to be one. 

i mC Type-I Interval Censoring: If r  = 0 and for i = 1,2,.....,m-1 and r  = n - k progressive type I interval

censoring results reduces to type-I interval censoring. 

i m iC Type-I Censoring: If r  = 0 for i = 1,2,.....,m-1, r  = n - k and all  k  ` s are fixed to be one then progressive

censoring Type I reduce to single censored Type I.

 

Expected Duration: An experimenter may be interested to know whether the test can be completed within a

specified time. The information is important for an experimenter to choose an appropriate sampling; because the

time required to complete an experiment has direct implication on the cost.

Following Kandell & Anderson , under progressive interval type I censored and grouped data; the time of[5]

m mremoval are fixed with T  = T being the time of experiment termination and r  being the number of surviving units

at that time. The expected duration with fixed removal will derived as follows

Length of  Test Probability of Failure Probability of Removal

1 1 1t P [1- F(t )]n ri

2 1 2 1 2t (P  + P )  - P [1- F(t )]n-r1 n-r1 r2

C C C

C C C

C C C

i it 1 i 1 i-1 [1- F(t )](P  +... + P )  - (P  +... + P ) rin-r1...ri-1 n-r1...ri-1

C

C

C

m-1 1 m-1 1 m-2 m-1t (P  +... + P )  - (P  +... + P ) [1- F(t )]n-r1...ri-2 n-r1...rm-1 rm-i

1 i mT 1 - (P  +... + P ) [1- F(t )]n-r1...ri-1 rm

Where

It is follows that the expected duration under progressive interval type I is given by

iFor equal spacing, since t  = ih, for i = 1,2,...m; expected duration under this condition will be
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iFor r  = 0 for all i; expected duration from exponentiated Weibull distribution under grouped data is given by

Expected duration from Weibull distribution under grouped data can be found by substituting è = 1 in (6.3)

as follow

By expanding the term in brackets on the right of (6.4), interchanging summations and summing over the

subscript i , then

Using of L'Hopital's rule, we have

hence

Also, if â = 1; results for expected duration derived by Kandell & Anderson  can be obtained as special case[5]

from equation (6.5). 

i mBy putting r  = 1 for i = 1,2,....,m-1 and taking r  = n-k; expected duration under progressive interval censored

type I in (6.2) deduced to expected duration under interval censored type I as follow

(n)The time of complete sampling with n test units is given by E(X ), then; the expected value of the largest

(n)order statistics (X ) from exponentiated Weibull distribution will be

Under type I progressively interval censoring with random removals, the R terms are random; so the expected

time to complete an experiment under this type is given by taking the expectation of equation (6.1) with respect

to the R terms. The calculation is rather cumbersome, but it is given by

i i iwhere g(r ) = n-m-r -...-r  and P(R) is given in equation (4.1). thus, equation (6.1) gives an expression to

compute the expected time for given values of m  and n

The ratio of the expected time under different schemes to the expected time under complete sampling namely;

ratio of expected experiment times (REET).
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Note that the REET does not depend on the scale parameter . Suppose that an experimenter wants to observe

the failure of at least k complete failures when the test is anticipated to be conducted under different schemes.

Then, the REET provides important information in determining whether the experiment time can be shortened

significantly if a much larger sample of n test units is used and the test is stopped once k failures are observed.

A Numerical Illustration: There are no explicit forms for obtaining estimators for the exponentiated Weibull

distribution under progressively type I interval censored samples based on random removals. Therefore, numerical

solution and computer facilities are needed. 

Using “MATHCAD” (2001), a sample size 50 was generated from the exponentiated Weibull, with parameters

á = 400, â = .33 and è = 2 based on progressive type I interval censoring with random removal. The number of

isurviving items r  is assumed to follow a binomial distribution with parameters n ð. Where the removal probability

1 2 3ð takes the value 0.5 and the sample size of a binomial distribution n takes value 4, where r  = 0, r  =1, r  = 2,

4 5r  = 1  and the value of  is equal to all remaining units at time T  . The results are: 

0.3575 4145.30708 3351.54183 1247.90791 553.189694

0.3643 5461.59924 4042.50597 1331.44001 578.206387

2109.9 709.993006 7.81963961 6176.65796 74.8782122

2319.8 824.904223 18.097692 6301.14553 151.323126

2419 838.436423 29.5466397 7569.76306 163.906121

3013.3 898.681567 41.1364375 8556.98742 341.889786

3186.3 940.080164 44.4230497 22913.7974 471.388146

44.545 28434.094 3200.5292 1140.16731 475.522593

46.958 57635.2122 1352.72559 592.897951 56.3712566

47.995 112804.813 1431.66549 680.986265 58.2438191 

To check adequacy of these models to these generated data, and using Chi-square goodness of fit test is carried

out, we conclude that the models provides a good fit to the present data at 5% level of significance.

Suppose that progressive interval censored type I form the exponentiated Weibull family with binomial random

1removal occurs at five stages m = 5 . Assume that at time T  = .364, none unit selected at random from the

2survivors, were censored (i.e. removed from the test). At T  = 29.547, one additional randomly selected survivor

3 4was removed. Two additional randomly select survivor was removed at T  = 44.545. At time T  = 58.244, Another

5one unit selected at random from the survivors, and the test was terminated at T  = 151.323 with thirty-two

survivor. Therefore, using simulated data, we have the following

1C None unit selected at random from the survivors at time T  = .364 and the units are observed at this time are

0.357; 0.364.

2 1 2C At T  = 29.547, the censored item is 898.682 and the units known to have failed in the interval [T ; T ] are

7.82, 18.098, 29.547.

3C The units removed from the test at T  = 44.545 are 838.436, and the units are observed form the test at the

2 3next interval T  ,T  are 41.136, 44.423, 44.54.

4 3 4C The unit removed from the test at T  = 58.244 is 163.906 and the units are observed in the interval T  , T

are 46.958, 47.995, 56.371, 58.244.

5C The remaining survivors until the time T  = 151.323 are 

341.89 5461.59 2319.75 824.90 341.89 5461.599 2319.750 824.90

471.39 6176.65 2419.04 940.08 471.39 6176.65 2419.04 940.08

475.52 6301.14 3013.32 1140.16 475.52 6301.14 3013.32 1140.16

553.19 7569.76 3186.31 1247.90 553.19 7569.76. 3186.31 1247.90
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4 5and the units known to have failed in the last interval [T ; T ] are 74.878, 151.323. In summarizing data, we

record:

n = 50

1 2 3 4 5T  = .364 T  = 29.547 T  = 44.545 T  = 58.244 T  = 151.323

1 2 3 4 5k  = 2 k  = 3 k  = 3 k  = 4 k  = 2

1 2 3 4 5r  = 0 r  = 1 r  = 2 r  = 1 r  = 32

Using the mathematical computing package “MATHCAD” (2001) and using equations in section (4.2.1),

maximum likelihood estimates             for unknown parameters á, â and è are calculated, i.e., we have

Again, using a computing package “MATHCAD”, the approximate variances and covariance of the maximum

likelihood estimates             were calculated as described in section (4.2.1) and are given as 

Under fixed removal; maximum likelihood estimates               for unknown parameters  á, â and è form

the exponentiated Weibull family under progressive interval censored type I are obtained as

Under fixed removal; maximum likelihood estimates              for unknown parameters á, â and è form the

exponentiated Weibull family under progressive interval censored type I are obtained as

The value of   in the case of progressive type I interval with binomial removals are greater than the

corresponding in the fixed case, whilst the values of          in the case of progressive type I interval with

binomial removals are less than in the fixed case. 

1 = As a special case, for progressive type I censored data with random removal; suppose that time T .364, T2

3 = 4 = 5 = = 29.547, T 44.545, T 58.244 and T 151.323. Survivor units 0, 1, 2, 1 and 32 are removed from the test,

respectively. Thus, we have n = 50, k = 14 failed units. We have the following realizations

1 = 3 = 4 = 5 = T .364, T2 = 29.547, T 44.545, T 58.244 and T 151.323

1 2 3 4 5r  = 0 r  = 1 r  = 2 r  = 1 r  = 32

The estimates             for unknown parameters  á, â and è are obtained as

For  progressive  type  I censored data with fixed removal; the estimates              for unknown parameters

á, â and è are obtained as
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with following 

The value of     in the case of progressive type I interval with binomial removals are greater than the

corresponding in the fixed case, whilst the value of    in the case of progressive type I interval with binomial

removals are less than in the fixed case, but    is equal in the two cases.

1 2 3 4For type I interval data (r  = r  = r  = r  = 0 )   , we have the following realizations

1 2 3 4 5T  = .364 T  = 29.547 T  = 44.545 T  = 58.244 T  = 151.323

1 2 3 4 5k  = 2 k  = 3 k  = 3 k  = 4 k  = 2

1 2 3 4r  = 0 r  = 0 r  = 0 r  = 0 n - r = 36

The maximum likelihood estimates              for unknown parameters á, â and è are obtained as

with following

For type I censoring, let T = 151.323, thus, we have k = 24 failure, and n - k survivor to be removed from

the test. Using these data, we have

the approximate variances and covariance of the maximum likelihood estimates              are obtained as 

We have computed the expected duration for m  = 5 such that n > m; the duration of a progressive interval

type  I  with  random  removal  E(T)  =  0.0128  is shorter than progressive interval type I without removal

E(T/R) = 0.0128. Note that, the removal probability ð has an important impact on the estimation of the parameters;

also, a large removal probability ð means more withdrawals occurred in the process, so variance, covariance and

expected decrease. Also, expected duration under interval type I censored, censored type I and complete sample

(k)are E(T) = 0.0131, E(T) = 3.458 and  E(X )  = 12.806 respectively.

Using ratio of expected experiment times (REET) in (6.9), progressive interval type I censored with fixed

removal, progressive interval type I censored with random removal, interval type I censored and type I censored

 0.003, 9.9x10 , 0.001 and 0.27 respectively. Note that; the values of the REET of different schemes and complete-4

sampling plan decrease as n increases; also, the REET does not depend on the scale parameter . 
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