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Abstract: Many industrial engineering design problems result in complex optimization tasks,
which are difficult to solve using conventional optimization techniques. The proposed paper
deals with special global optimization method widely applicable in scientific problems. The
main point of this research work is to optimize the membership functions parameters of the
Fuzzy Logic Neural Network (FLNN) in Genetic Algorithms (GAs) chromosome based on
additional information of the domain. This additional information may be indirect definition
of the search ranges for every membership shape forming parameter based on 2nd order fuzzy
sets. This approach uses Linear Adapted Genetic Algorithm (LAGA) for the optimization of
the FLNN parameters. So, the main attribute of the proposed approach is to adapt genetic
algorithm using LAGA, and then adopt FLNN model configuration while the optimization
process is running using LAGA. In this paper the derivation of 2nd order method is performed
for membership function of gaussian shape are assumed for Neuro-fuzzy approach. The
explanation of the optimization method is presented in details on two examples.
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1. Introduction

Genetic algorithms (GAs) are search algorithms that simulate the process of natural selection
and survival of the fittest. GAs attempt to find a good solution to some problem (e.g., find the
maximum of a function) by random generating a collection of potential solutions to the
problem and then manipulating those solutions to the problem and then manipulation those
solutions using genetic operators. Each solution is assigned a scalar fitness value, which is a
numerical assessment of how well it solves the problem. The key idea is to select for
reproduction the solutions with higher fitness and apply the genetic operators to generate new
solutions. Through crossover and mutation operations new solutions are hopefully generated
out of the current set of potential solutions. The process continues until some termination
condition is met. Further discussion on GAs can be obtained in (Goldberg 1989), (Winter
1996), and (Gen 2000). When GA is implemented as a learning procedure, the FLNN
parameters are coded as a string referred to as a chromosome. Under instances in the
population of chromosomes, the genetic operator like crossover probability rate (Pc), and
mutation probability rate (Pm) are performed. The fitness is proportional to the whole system
error. After a number of generations starting from random or heuristically determined
population, the later converges to optimal or close to optimal solution. Being applied to
Neuro-Fuzzy systems the initial population of network parameters is formed on the basis of
the fuzzy rules obtained from experts. Further genetic learning minimizes the difference
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between required and actual network response. The reminder of this paper is organized as
follows: Section 2 shows LAGA approach. Section 3 illustrates the structure of Fuzzy Logic
Neural Network model, and the derivation of 2nd order method for determining membership
functions (MFs) parameters boundary search is performed for MFs of gaussian shape are
assumed in section 4. Section 5 contains application examples. Conclusion is presented in
section 6.

2. Linear Adapted Genetic Algorithm (LAGA)

The crossover probability rate Pc, and mutation probability rate Pm are concluded in GA
operation to provide faster convergence when compared to constant probability rates.  Pc is
set up high at the beginning of the generation and decreases linearly during the generations as
in (1) (Attia and Horáček 2001). As known from Standared Genetic Algorithm (SGA) at the
beginning of generation the randomized initial GA population diverse, it means that
promising solutions are scattered through the search space. So, Pc is high in the initial
generation, but over the generations these solutions will born even better solutions. It means
the population converges to smaller subset of the search space, and Pc value will decrease
according to the formula (1), where the large values for Pc (0.5-1.0), and small values of Pm
(0.0-0.005) (Goldberg 1989), and (Srinivas 1994).

( ) 1 2/-  )(c += MxxP (1)
where x is the number of generations, and M is the maximum number of generations. As it is
known, mutation is not needed at the beginning of generation where the members of the
population are very distinct, and the value of Pm is increased linearly also as a function of
number of generations to exploit the improved solution in the established region of the current
best solution and that is clear in equation (2).

( ) ( ) ( )1005010050 −−−= M/.xM.xPm (2)

3. Proposed Fuzzy Logic Neural Network (FLNN)

The FLNN model is built using a multilayer fuzzy logic neural network shown in figure 1
proposed by Lin (Lin 1991), and has some modification by (Kolínský 2000), is particular
implementation of a fuzzy system equipped with fuzzification and defuzzification interfaces.
This network represents linguistic fuzzy system with general rule-base structure. The
following example demonstrates this structure:

Figure 1 Fuzzy Logic Neural Network Topology.



-3-

FLNN consists of several layers, which are described, in the next part (Horáček 1995):

Layer 1: Actual values of the input variables are stored in this layer. Generally fuzzy sets are
considered as the input values (crisp numbers are special cases of fuzzy sets). The fuzzy sets
are in the parametric form or in the look-up table form.
Layer 2: Rule premises (input reference fuzzy sets) are stored here. Actual input value is
compared with the rule premise using degree of overlapping:

( ) ( ) ( )( ) ( )AXxA,xXTsupA,XD T
x

T ∩== hgt (3)

where T is selected t-norm and hgt is height of intersection of X and A with respect to t-norm
T. In the special case of crisp input X=x* the DT (X, A) is simply.

( ) ( )∗= xAA,XDT (4)
For some parametric fuzzy sets and some t-norms for DT (X, A) can be derived analytical
expression. For the other cases it must be computed numerically.
Layer 3: Every neuron in this layer performs fuzzy conjunction using selected t-norm.

)u,...,u,u(Ty n21= (5)
Common parameter of the layer is a type of the t-norm and its parameters.
Layer 4: Every neuron represents a rule weight w. Output of the neuron is a overall degree of
rule activation act and is computed as follows:

uwacty ⋅== (6)
where parameter w has to lie in the interval [0,1].
Layer 5: There are only rule consequents (output reference fuzzy sets) stored in this layer. The
fuzzy sets are usually in the parametric form. Input of the neuron is overall degree of rule
activation act. This value is attached to the reference fuzzy set and together they are fed to the
next aggregation layer.
Layer 6: Output of the network is computed here using selected aggregation (inference)
algorithm. There is a corresponding fuzzy set Bi with its activation degree acti in the i-th input
of every neuron. When we use Mamdani inference algorithm then the output fuzzy set is
computed as follows:

( ) ( )( )yB,actTmaxyY ii

n

i 1=
= (7)

where n is the number of inputs to the neuron.
When we use fuzzy arithmetic based inference algorithm then the output fuzzy set is
computed as follows:

∑∑
==

⋅=
n

i
i

n

i
iii act/BactY

11
(8)

Usually only crisp output value y is needed. Then we use some defuzzification method to get
the crisp value. The most often used method is a centroid average defuzzification:

∑∑
==

⋅⋅=
n

i
ii

n

i
ii yact/yacty

11
(9)

where yi is a centroid of fuzzy set Bi.
FLNN works in the following manner (Horáček 1995), (Kolínský 2000). In the forward
regime as input values (crisp values, fuzzy sets) are first compared with all premises of the
rules (input reference fuzzy sets). Outputs of the AND-neuron are then combined with rule-
weight (preference between rules) to obtain degree of rule activation. In the last layer these
degrees are aggregated with corresponding consequents of the rules (output reference fuzzy
sets) according to inference algorithm. Output of the FLNN can be fuzzy set or crisp value
(after defuzzification).
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Determining MF parameters boundary search.

In case of FLNN these membership functions MFj (xi) of input parameters xi and output
parameters are usually approximated by Gaussians. A Gaussian shape is formed by two
parameters: mathematical expectation c and standard deviation σ as in formula (10):

( ) ( )
( )












 −
−
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ji cx

jjijij ecxGxMF σσ (10)
To define 2nd order fuzzy set from given MF (x), as it is shown in Figure 2. 2nd order fuzzy set
is the area between d+ and d-, where d+, and d- are the upper and the lower crisp boundaries of
the 2nd order fuzzy sets respectively (Ascold 1996). The following expressions to determine
the crisp boundaries of it are in (11), and (12):

( ) ( )( )δ+=+
ijij xMF,minxd 1 (11)

( ) ( )( )δ−=−
ijij xMF,maxxd 0  (12)

The formulas (11) and (12) are based on the assumptions that the height of the slice of the 2nd

order fuzzy region, bounded by d+ and d- and at point x, is equal to the value of 2δ at this
point, where δ ∈ [0, 0.3679] and these boundaries are equidistant in respect to MF (x). To
obtain the ranges for the MFs shape forming parameters, it should be assumed, that these 2nd

order fuzzy sets are MF search spaces. Therefore, all MFs with acceptable parameters should
be inside of these areas. In general case the intervals of acceptable values for every MFs shape
forming parameter  (e.g.   c =  [c1, c2], and ∆σ = [σ1, σ2] for Gaussians) may be determined by
the means of solution of formulas (10), (11), and (12).  Practically, it may be done more
roughly, covering some larger search space. For instance, c1 and c2 for Gaussians may be
found as the maximal and the minimal roots of the equation d+ = 1, that may be easily
calculated. This equation is based on the assumption that a fuzzy notion represented by the
Gaussian must have a point where it is absolutely true. The σ1, and σ2 can be easily found
from the following four equations:

( ) ( ) ( ) ( )12     and  σσ±=δ−σσ±σσ±=δ+σσ± ,c,cG,c,cG;,c,cG,c,cG (13)

where we choose minimal σ1 and maximal σ2 from the roots. These equations are based on
the assumption that the acceptable Gaussians with [σ1, σ2] should cross the 2nd order fuzzy
region slices at points x = c±σ.
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4. Applications
• The First Numerical Example

This section discusses how the proposed FLNN is formulated using LAGA approach where
all the parameters of the FLNN are initially randomized, and optimized using LAGA. After
getting the intervals of acceptable values for every MFs shape forming parameter (c =  [c1,
c2], and ∆σ = [σ1, σ2] for Gaussians) using 2nd order fuzzy sets for all membership functions.
Let us explain the method applying on a chaotic system example to be clear. The system used
in this example is defined by chaotic Mackey-Glass differential delay equation (Jang 1997):

( ) ( )
( ) ( )tx.
tx

tx.tx 10
1

20
10 −

τ−+
τ−=& (14)

The prediction of future values of this time series is a benchmark problem which has been
considered  by a number of connectionist researchers. Fourth-order  Runge-Kutta  method
was used to find the numerical solution of the equation. The time step used in the method is
0.1, initial condition   x(0) = 1.2, τ = 17.

• Coding of FLNN parameters:

Figure 1 shows four inputs (x1, x2, x3, x4) and one output (Y1). Each of the input fuzzy
variables is quantified into three Gaussian membership functions, and every membership
function has two parameters: mathematical expectation c and standard deviation σ, therefore
resulting 24 parameters at input. Using Wang technique for generating rules from the given
data (Wang 1992), we have 25 rules, it means we have 25 weights, and 25 centeroids
represented by singletons. Thus a total of 74 parameters (3membership_functions x 2parameres x 4variables
+ 25wightes + 25centroids) are needed to be optimized using LAGA. The coded parameters of
FLNN are arranged as shown in the following table (1) to form the chromosome of the
population.

Table 1 The coded parameters of FLNN.
Chromosome Sub-chromosome of

 inputs
Sub-chromosome of

rule weights
Sub-chromosome of

 rule consequents
   x1,        x2,        x3 ,      x4 w1, w2, ……, w25 b1,b2,… ……..,b25

Parameters
 74

c1, σ1,  c2, σ2,   c3,σ3,   c4,σ4

3*2*4

w1, w2, …..…, w25

25

b1, b2,… … ….., b25

25
Gene 1000000000…0110100011

         c1,    ….… ,  σ4

0100111111…
       w1, ………, w25

0111001010 …
        b1   … ……, b25

• Optimization by LAGA

To describe the LAGA optimization process, consider the block diagram shown in figure 4.
At the beginning of the process, the initial population comprises a set of chromosomes. Every
chromosome has 74 genes, and every gene has 10 bits. So the chromosome length is 740 bits.
The population consists of 200 chromosomes, which are all randomized initially.
After each of the chromosome evaluated and associated with a fitness, the current population
undergoes the reproduction process to create the next generation of population, the “roulette
wheel’ selection scheme is used to determine the member of the new generation population.
Then the mating pool is formed, and crossover are applied, and followed by mutation
operation due to LAGA approach. Finally, after these three operations, the overall fitness of
the population is improved. The procedure is repeated until the termination condition is
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reached. The termination condition is a maximum allowable generations or a certain value of
MSE required to be reached. The choice of the fitness function is the normalized error
function, which is known by root mean square error (RMSE) for the whole model of FLNN
as:

( )tvarMSERMSE = , (15)

( )( )∑∑
= =

−=
N

1j

ny

1i

2
ijji txy

nyN*
1  MSE , (16)

( ) ( )∑∑
=

−=
N

1j

ny

i

2
iij tt

nyN*
1tvar (17)

where, MSE is the mean square error, var (t) is the variance of targets, ny is the number of
outputs, N is the number of patterns (size of training set), yi (xj) is the ith output of fuzzy
system for input vector xj, x is the input variables, t  is the estimated value or (the matrix of
targets of size (ny*N)), and t is the mean of target t.

Figure 4 - Block diagram for LAGA optimization process

5. Simulation Results

From the Mackey- Glass time series x (t), we extracted 3000 input output pairs. The first 1000
data points are used to build the fuzzy model, while the remaining 2000 data points have been
used to identify a FLNN model. The number of MFs assigned to each input of the FLNN was
set three. Figure 5 depicts the membership functions for each input variable before and after
training using LAGA. After 420 generations, and 90 min computation time on MATLAB
compiler, and PC 400MHz with memory 64 MB. It is seen from figure 6, the FLNN model
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has a good match with the actual model with a MSE “0.0012”, and RMSE is “0.14” as shown
in figure 7.
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 Figure 5 (a, b) - Membership functions in chaotic system time series prediction:
                             Dashed line: The normalized MFs before learning.
                             Solid line: The optimized MFs after using LAGA
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Figure 5 (c, d) - Membership functions in chaotic system time series prediction:
                           Dashed line: The normalized MFs before learning.
                           Solid line: The optimized MFs after using LAGA
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• The Second Numerical Example

This example is taken from (Narendra 1990)], (Wang 1994) in which plant to be identified is
governed by the difference equation (18):

( ) ( ) ( ) ( )[ ]kugky.ky.ky +−+=+ 160301 (18)

where the unknown function has the form )0.1sin(5)0.3sin(3)0.6sin()g( πuπuπuu ++= .
The plant is modeled using FLNN described in section 3. The model has three input variables
u (k), y(k), and y(k-1) and a single output y(k+1). Each of the input fuzzy variables is
quantified into five Gaussian membership functions, and every membership function has two
parameters: mathematical expectation c and standard deviation σ, therefore resulting 30
parameters at input of FLNN model. Using Wang technique for generating rules from the
given data [Wang 1992], we have 20 rules, it means we have 20 weights, and 20 centeroids
represented by singletons. Thus a total of 70 parameters (5membership_functions x 2parameres x 3variables
+ 20wightes + 20centroids) are needed to be optimized using LAGA.

The learning procedure of LAGA is applied also as mentioned in the first numerical example.
And also figure 4 shows the block diagram for LAGA optimization process for optimizing the
FLNN model parameters of second numerical example. The first 250 data points are used to
build the fuzzy model at )250sin(2)u( /πkk = , while the remaining 450 data points have been
used to identify a FLNN model. Figure 8 shows the FLNN model has a good match with the
actual model with a MSE “0.0473”, and RMSE is “0.0607 ” as shown in figure 9. Figure 10
depicts the membership functions for each input variable before and after training using
LAGA. Figure 11 shows the outputs model and the plant for the input

)250sin(250)u( /πk.k =  for 1≤ k ≤ 250 and 501≤ k ≤ 700 and
)250.5sin(2)2500.5sin(2)u( /πk/πkk +=  for 251≤ k ≤ 500. We see from figure 11 that the

trained identification FLNN model approximates the plant quit well.
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Figure 8 - Outputs of the plant (solid line), and
                  FLNN model (dashed line) for
                  )250sin(2)u( /πkk = .
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Figure 10 - (a, b, and c) are input MFs:
Dashed line: The normalized MFs before learning.
 Solid line: The optimized MFs after using LAGA
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Figure 11 - Outputs of the plant (solid line), and
FLNN model (dashed line) for the input

)250sin(2)u( /πkk = for and 1≤ k ≤ 250 and
501≤k≤700,and

)250.5sin(2)2500.5sin(2)u( /πk/πkk +=
 for 251≤ k ≤ 500.

6. Conclusion

In this paper, we have introduced an approach for modifying crossover and mutation
probability rates based on generation index. The crossover probability rate decrease, and
mutation probability rate increases linearly with the generation index. This paper describes a
method for determining boundary in the parameters search space of membership functions
depending on 2nd order fuzzy sets. It gives more information about optimization of fuzzy and
neuro-fuzzy systems using GAs. The simulation results of the application examples indicate
the effectiveness of the proposed approach of LAGA to be promising learning algorithm.
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