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a b s t r a c t

Bayes and classical estimators have been obtained for a two-
parameter exponentiated Pareto distribution for when samples are
available from complete, type I and type II censoring schemes.
Bayes estimators have been developed under a squared error loss
function as well as under a LINEX loss function using priors of
non-informative type for the parameters. It has been seen that the
estimators obtained are not available in nice closed forms, although
they can be easily evaluated for a given sample by using suitable
numerical methods. The performances of the proposed estimators
have been compared on the basis of their simulated risks obtained
under squared error as well as under LINEX loss functions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The exponentiated Pareto distribution with a cumulative distribution function is expressed as

F(x;α, θ) =
[
1− (1+ x)−α

]θ x > 0, α > 0, θ > 0. (1.1)

and was introduced by Gupta et al. [5] as a lifetime model. The probability density function with two
shape parameters α and θ is given by

f (x;α, θ) = αθ
[
1− (1+ x)−α

]θ−1
(1+ x)−(α+1) x > 0, α > 0, θ > 0. (1.2)

When θ = 1, the above distribution corresponds to the standard Pareto distribution of the second
kind [see [6]].
The procedure of estimation for the exponentiated Pareto distribution under censoring seems

to be untouched and, therefore, we are interested in developing a procedure of estimation for the
exponentiated Pareto distribution for a censored sample case [see [8]].
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On another important issue, it is to be noted that the inferential procedures for lifetime models
are often developed using squared error loss functions. No doubt the use of the squared error loss
function is well justified when the loss is symmetric in nature. Its use is also very popular, perhaps,
because of its mathematical simplicity. But in life testing and reliability problems, the losses are not
always symmetric in nature and hence the use of a squared error loss function is forbidden and
unacceptable in many situations. Inappropriateness of a squared error loss function has also been
pointed out by different authors. Ferguson [4], Zellner and Geisel [14], Aitchison and Dunsmore [1],
and Varian [12] introduced the LINEX loss function which is a simple generalization of the squared
error loss function and can be used in almost every situation. The squared error loss function can
also be considered as a particular case of the LINEX loss function [see [13,9,7], etc.]. Gupta et al. [5]
showed that the exponentiated Pareto distribution can be used quite effectively in analyzing many
lifetime data. The exponentiated Pareto distribution can have decreasing and upside-down bathtub
shaped failure rates depending on the shape parameter θ . Shawky and Abu-Zinadah [10] studied
how the different estimators of the unknown parameters of an exponentiated Pareto distribution
can behave for different sample sizes and for different parameter values. Finally, Singh et al. [11]
studied the exponentiated Weibull family on the basis of a type II censored scheme. Here, we mainly
compare themaximum likelihood estimatorswith the other estimators, such as those of themethod of
moment estimators, estimators based on percentiles, least squares estimators, weighted least squares
estimators and the estimators based on linear combinations of order statistics, mainly with respect to
their biases and root mean squared errors, using extensive simulation techniques.
Recently, it has been very important to introduce and study point estimators for both of the

shape parameters of the exponentiated Pareto distribution, under complete and censored type I and
censored type II samples. The organization of the paper is as follows: In Section 2maximum likelihood
estimators are discussed disregarding the sample type, and the Fisher information matrix will be
obtained. Bayes estimators have been developed under a squared error loss function as well as under
the LINEX loss function using priors of non-informative type for the parameters in Section 3. Finally,
in Section 4 an example will be discussed to illustrate the application of the results.

2. Maximum likelihood estimators

In a typical life test, n specimens are placed under observation and as each failure occurs the time
is noted. Finally at some pre-determined fixed time, T , or after a pre-determined fixed number of
sample specimens fail, r , the test is terminated. In both of these cases the data collected consist of
observations x(1), x(2), . . . , x(r) plus the information that (n− r) specimens survived beyond the time
of termination, T in the former case and x(r) in the latter. When T is fixed and r is thus a random
variable, censoring is said to be of single censored type I; when r is fixed and the time of termination
T is a random variable, censoring is said to be of single censored type II. In both type I and type II
censoring, Cohen [2] gave the likelihood function as

L(X;α, θ) =
n!

(n− r)!

r∏
i=1

f (x(i);α, θ) [1− F(x0;α, θ)]n−r (2.1)

where f (x;α, θ) and F(x;α, θ) are the density and distribution functions respectively, and for type
I the time of termination is at x0 = T and for type II at x0 = x(r). If r = n, then Eq. (2.1) reduces to
complete samples. By taking the logarithm likelihood function with the cumulative function (1.1) and
the probability density function (1.2) based on Eq. (2.1), we obtain

log L(X;α, θ) = log C + r logα + r log θ + (θ − 1)
r∑
i=1

log
[
1− (1+ x(i))−α

]
− (α + 1)

r∑
i=1

log(1+ x(i))+ (n− r) log [1− F(x0;α, θ)] (2.2)

where C = n!/ (n− r)!.
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Thus, the maximum likelihood estimates α̂ and θ̂ can be obtained by differentiating (2.2) with
respect to α and θ and equating to zero; that is, by simultaneously solving the estimating equations,

r
α
+ (θ − 1)

r∑
i=1

(1+ x(i))−α log(1+ x(i))
1− (1+ x(i))−α

−

r∑
i=1

log(1+ x(i))− (n− r)
∂/∂α.F(x0;α, θ)
1− F(x0;α, θ)

= 0 (2.3)

r
θ
+

r∑
i=1

log[1− (1+ x(i))−α] − (n− r)
∂/∂θ.F(x0;α, θ)
1− F(x0;α, θ)

= 0 (2.4)

and therefore

α̂ =
r.w

w
r∑
i=1
log(1+ x(i))+ (n− r)∂/∂α.F(x0;α, θ)− w.(θ − 1)

r∑
i=1

(
(1+x(i))−α log(1+x(i))

1−(1+x(i))−α

) (2.5)

and

θ̂ =
−r.w

w
r∑
i=1
log[1− (1+ x(i))−α̂] − (n− r)∂/∂θF(x0; α̂, θ̂ )

(2.6)

where

w = [1− F(x0; α̂, θ̂ )],
∂

∂α
F(x0;α, θ) = θ

[
1− (1+ x0)−α

]θ−1
(1+ x0)−α log(1+ x0),

and
∂

∂θ
F(x0;α, θ) =

[
1− (1+ x0)−α

]θ log [1− (1+ x0)−α] .
Note that if r = n, the normal equations in (2.3) and (2.4) will reduce to the normal equations from

the complete sample in [10].
Again, to solve the system of non-linear equations (2.5) and (2.6), we must resort to numerical

techniques and mathematical packages.
The asymptotic variance–covariance matrix of the estimators of the parameters is obtained by

inverting the Fisher information matrix in which elements are negatives of expected values of the
second partial derivatives of the logarithm of the likelihood function. The elements of the sample
information matrix for the censored schemes sample will be

∂2

∂α2
log L(X;α, θ) =

−r
α2
− (θ − 1)

r∑
i=1

(1+ x(i))−α[log(1+ x(i))]2

[1− (1+ x(i))−α]2

− (n− r)
∂2/∂α2F(x0;α, θ)[1− F(x0;α, θ)] + [∂/∂αF(x0;α, θ)]2

[1− F(x0;α, θ)]2

∂2

∂θ2
log L(X;α, θ) =

−r
θ2
− (n− r)

∂2/∂θ2F(x0;α, θ)[1− F(x0;α, θ)] + [∂/∂θF(x0;α, θ)]2

[1− F(x0;α, θ)]2

and

∂2

∂α∂θ
log L(X;α, θ) =

r∑
i=1

(1+ x(i))−α log(1+ x(i))
1− (1+ x(i))−α

− (n− r)
∂2/∂α∂θF(x0;α, θ)[1− F(x0;α, θ)] + ∂/∂αF(x0;α, θ)∂/∂θF(x0;α, θ)

[1− F(x0;α, θ)]2
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where
∂2

∂α2
F(x0;α, θ) = θ(θ − 1)

[
1− (1+ x0)−α

]θ−1 [
(1+ x0)−α log(1+ x0)

]2
− θ

[
1− (1+ x0)−α

]θ−1
(1+ x0)−α [log(1+ x0)]2 ,

∂2

∂θ2
F(x0;α, θ) =

[
1− (1+ x0)−α

]θ log [1− (1+ x0)−α] ,
and

∂2

∂α∂θ
F(x0;α, θ) =

[
1− (1+ x0)−α

]θ−1
(1+ x0)−α log(1+ x0)

+ θ
[
1− (1+ x0)−α

]θ−1
(1+ x0)−α log(1+ x0) log

[
1− (1+ x0)−α

]
.

Therefore the approximate sample information matrix will be

I(α̂, θ̂ ) = −


∂2 ln L
∂α2

∂2 ln L
∂α∂θ

∂2 ln L
∂α∂θ

∂2 ln L
∂θ2


α = α̂

θ = θ̂

. (2.7)

[see [3]]. For large n (n ≥ 50), matrix (2.7) is a reasonable approximation to the inverse of the Fisher
information matrix. Note that closed form expressions for the expected values of these second-order
partial derivatives are not readily available. These terms can be evaluated byusing numericalmethods.
Furthermore, define V = limn→∞ nI−11 (α̂, β̂, θ̂ ). The joint asymptotic distribution of the maximum
likelihood estimators of α and θ is multivariate normal [see [8]].

3. Bayes estimators

Consider priors of independent non-informative type for the parameters α and θ as follows:

g1(α) =
1
c
; 0 < α < c (3.1)

and

g2(θ) =
1
θ
; θ > 0 (3.2)

respectively.
Combining (3.1) and (3.2) with the likelihood function (2.1) with cumulative function (1.1) and

probability density function (1.2) and using the Bayes theorem, the joint posterior distribution is
derived as follows:

π(α, θ) =

θ r−1αr
r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

{
1−

[
1− (1+ x0)−α

]θ}n−r
j1

(3.3)

where

j1 =
∫ c

0

∫
∞

0
θ r−1αr

r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

×

{
1−

[
1− (1+ x0)−α

]θ}n−r dθdα. (3.4)

The marginal posterior of a parameter is obtained by integrating the joint posterior distribution
with respect to the other parameter and hence the marginal posterior of α can be written, after
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simplification, as

π(α/x) =
αr

r∏
i=1
(1+ x(i))−(α+1)j2

j1
(3.5)

where

j2 =
∫
∞

0
θ r−1

r∏
i=1

[
1− (1+ x(i))−α

]θ−1 {1− [1− (1+ x0)−α]θ}n−r dθ.
Similarly, integrating the joint posteriorwith respect toα, themarginal posterior θ can be obtained

as

π(θ/x) =
θ r−1j3
j1

(3.6)

where

j3 =
∫ c

0
αr

r∏
i=1

(1+ x(i))−(α+1)
r∏
i=1

[
1− (1+ x(i))−α

]θ−1 {1− [1− (1+ x0)−α]θ}n−r dα.
The Bayes estimators for parameters α and θ of the exponentiated Pareto distribution under the

squared error loss function may be defined as

α̂bs = E(α/x) =
∫ c

0
απ(α/x)dα

θ̂bs = E(θ/x) =
∫
∞

0
θπ(θ/x)dθ

respectively. These estimation can be expressed as

α̂bs =
j4
j1

and

θ̂bs =
j5
j1

where

j4 =
∫ c

0

∫
∞

0
θ r−1αr+1

r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

×

{
1−

[
1− (1+ x0)−α

]θ}n−r dθdα (3.7)

and

j5 =
∫ c

0

∫
∞

0
(θα)r

r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

×

{
1−

[
1− (1+ x0)−α

]θ}n−r dθdα. (3.8)

Following Zellner [13], the Bayes estimators for the shape parameters α and θ of exponentiated
Pareto distribution under the LINEX loss function are

α̂bl =
−1
a
log(E(e−aα))
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Table 1
Maximum likelihood estimators.

Samples Estimators
α̂ θ̂ MSE(α̂) MSE(θ̂)

Complete 1.824 0.447 0.031 0.00279
Type I censored 1.767 0.445 0.054 0.00306
Type II censored 1.580 0.417 0.176 0.00682

and

θ̂bl =
−1
a
log(E(e−aθ ))

respectively, where E(.) denotes the posterior expectation. After simplification, we have

α̂bl =
−1
a
log

(
j6
j1

)
(3.9)

and

θ̂bl =
−1
a
log

(
j7
j1

)
(3.10)

where j1 is given in (3.4),

j6 =
∫ c

0

∫
∞

0
e−aαθ r−1αr

r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

×

{
1−

[
1− (1+ x0)−α

]θ}n−r dθdα (3.11)

and

j7 =
∫ c

0

∫
∞

0
e−aθθ r−1αr

r∏
i=1

[
1− (1+ x(i))−α

]θ−1
(1+ x(i))−(α+1)

×

{
1−

[
1− (1+ x0)−α

]θ}n−r dθdα. (3.12)

There are no explicit forms for obtaining estimators for the exponentiated Pareto distribution for
censored scheme samples. Therefore, numerical solutions and computer facilities are needed.

4. A numerical illustration

We now illustrate the usefulness of the proposed estimators obtained in Sections 2 and 3. Using
‘‘MATHCAD’’ (2001), a sample of size 50 was generated from the exponentiated Pareto distribution,
with parameters α = 2 and θ = 0.5.
Table 1 shows the different estimators for different sample schemes. It may be seen from Table 1

that maximum likelihood estimators are closer to the true values of α and θ than those for sampling
schemes. The change in the type of scheme affects not only the maximum likelihood estimates, but
also the mean square error of the schemes. It would be illogical and inappropriate to suppose that
type I censored and type II censored forms perform better than the complete sample.
For Bayes estimators under different schemes the prior hyperparameters c = 4, 10 and 12 have

been evaluated and the corresponding values are shown in Tables 2–4. These tables reveal that the
Bayes estimators do not seem very sensitive to the variation of c . It is also worth mentioning that
although the Bayes estimators were developed with non-informative priors, the estimated values of
the Bayes estimators are not very far from the estimated values of themaximum likelihood estimators.
Also, these tables show the different estimators under different sample schemes for a = 1, 0.01 and
−1. It may be seen from these tables that Bayes estimators under the squared error loss function and
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Table 2
Bayes estimators for complete samples.

Hyperparameter c = 4 c = 10 c = 12
Estimators α̂ θ̂ α̂ θ̂ α̂ θ̂

Squared error loss 2.273 0.53 2.273 0.53 2.273 0.53

LINEX loss function
a = 1 0.937 0.229 0.937 0.228 0.937 0.228
a = .01 0.831 0.21 0.831 0.21 0.831 0.21
a = −1 1.02 0.238 1.02 0.238 1.02 0.238

Table 3
Bayes estimators for type I samples.

Hyperparameter c = 4 c = 10 c = 12
Estimators α̂ θ̂ α̂ α̂ θ̂ α̂

Squared error loss 2.221 0.431 2.272 0.434 2.272 0.434

LINEX loss function
a = 1 1.163 0.221 1.241 0.322 1.24 0.322
a = .01 0.866 0.186 0.865 0.177 0.865 0.177
a = −1 1.259 0.321 1.479 0.372 1.479 0.372

Table 4
Bayes estimators for type II samples.

Hyperparameter c = 4 c = 10 c = 12
Estimators α̂ θ̂ α̂ α̂ θ̂ α̂

Squared error loss 2.163 0.324 2.64 0.56 2.904 0.568

LINEX loss function
a = 1 0.551 0.356 0.549 0.252 0.509 0.241
a = .01 0.431 0.24 0.41 0.21 0.41 0.21
a = −1 0.772 0.472 0.707 0.332 0.7 0.332

the LINEX loss function are closer to the true values of α and θ as compared to maximum likelihood
estimators given in Table 1. The change in the value of a affects only the Bayes estimators for LINEX loss
function estimates, but on the basis of a single sample estimate, it would be illogical and inappropriate
to infer that Bayes estimators under the squared error loss function and the LINEX loss function
perform better than maximum likelihood estimators.
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