
1 Introduction
A fuzzy logic neural network (FLNN) [10] is a general

nonlinear interpolator used for modeling static systems. The
structure and rough setting of FLNN parameters is usually
done manually by an expert. Fine-tuning is done by numeri-
cal optimization techniques using reference input-output
data. The use of a random search technique is an option for
solving the problem. Genetic algorithm (GA) is an evolution-
ary method that simulates the process of natural selection and
survival of the fittest. GAs randomly generate a set of poten-
tial problem solutions, and manipulate them using genetic
operators. Each solution is assigned a scalar fitness value,
which is a numerical assessment of how well it solves the prob-
lem. Through crossover and mutation operations new feasi-
ble solutions are hopefully generated. The process continues
until the termination condition is met. Further discussion on
GAs can be found in [6], [17], and [5]. When GA is imple-
mented as a learning procedure, the FLNN parameters are
coded to form a string referred to as a chromosome. Under
instances in the population of chromosomes, the genetic op-
erations are performed. The fitness is inversely proportional
to the whole system error, which represents the difference be-
tween the required and actual network response.

The remainder of this paper is organized as follows: Sec-
tion 2 illustrates the structure of a Fuzzy Logic Neural Net-
work model. In section 3, the derivation of the membership
function (MF) constraints is performed for MFs of Gaussian
shape. Section 4 shows the LAGA approach. The proposed
genetic algorithm with constrained search space is explained
in detail in section 5. The explanation of the optimization
method is presented in detail on the basis of two application
examples, and the conclusion is presented in Section 6.

2 Proposed fuzzy logic neural network
(FLNN)
The FLNN model as a general nonlinear interpolator is

built using the multilayer fuzzy logic neural network shown in
Fig. 1, proposed by Lin [10], with some modification by [9].
This is a particular implementation of a fuzzy system equip-
ped with fuzzification and defuzzification interfaces. This net-
work represents a linguistic fuzzy system with a general
rule-based structure. The following example demonstrates
this structure:
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Fig. 1: Fuzzy logic neural network topology



An FLNN consists of several layers [7], [9]:
Layer 1: Actual values of the input variables are stored in this
layer. Generally, fuzzy sets are considered as the input values
(crisp numbers are special cases of fuzzy sets). The fuzzy sets
are in parametric form or in look-up table form.
Layer 2: Rule premises (input reference fuzzy sets) are stored
here. The actual input value is compared with the rule pre-
mise using degree of overlapping:

� � � � � �� � � �D X A T X x A x AT
x

T, sup ,� � �hgt X (1)

where T is the selected t-norm and hgt is the height of inter-
section of X and A with respect to t-norm T. In the special case
of crisp input X � x* the DT (X, A) is simply

� � � �D X A A xT , *� (2)
For some parametric fuzzy sets and some t-norms for

DT (X, A) an analytical expression can be derived. For the
other cases it must be computed numerically.
Layer 3: Every neuron in this layer performs a fuzzy conjunc-
tion using the selected t-norm.

� �y T u u u� 1 2, , ,� n (3)
The common parameter of the layer is the type of t-norm

and its parameters.
Layer 4: Every neuron represents a rule weight w. The output
of the neuron is the overall degree of rule activation act, and is
computed as follows:

y act w u� � � (4)
where parameter w has to lie in the interval [0,1].
Layer 5: Only rule consequents (output reference fuzzy sets)
are stored in this layer. The fuzzy sets are usually in the para-
metric form. The input of the neuron is the overall degree
of rule activation act. This value is attached to the reference
fuzzy set, and together they are fed to the next aggregation
layer.
Layer 6: The output of the network is computed here, us-
ing the selected aggregation (inference) algorithm. There is
a corresponding fuzzy set Bi with its activation degree acti
in the i-th input of each neuron. When we use the Mamdani
inference algorithm, the output fuzzy set is computed as
follows:

� � � �� �Y y T act B y
i

n
�

�
max ,

1
i i (5)

where n is the number of inputs to the neuron.
When we use a fuzzy arithmetic based inference algo-

rithm, the output fuzzy set is computed as follows:
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Usually only crisp output value y is needed. Then we use a
defuzzification method to get the crisp value. The most widely
used method is centroid average defuzzification:
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where yi is a centroid of fuzzy set Bi.
FLNN works in the following manner [7], [9]. In the

forward run the input values (crisp values, fuzzy sets) are first
compared with all premises of the rules (input reference fuzzy

sets). The outputs of the AND-neuron are then combined
with rule-weight (preference between rules) to obtain the
degree of rule activation. In the last layer these degrees are
aggregated with the corresponding consequents of the rules
(output reference fuzzy sets) according to the inference algo-
rithm. The output of the FLNN can be a fuzzy set or a crisp
value (after defuzzification).

3 Determining constraints of MF
parameters
In the case of FLNN the membership functions MFj (xi)

of input xi and output y are frequently approximated by
Gaussians. A Gaussian shape is formed by two parameters:
mathematical expectation c and standard deviation � as in
formula (8):
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The idea of 2nd order fuzzy set was introduced to get the
boundary of Gaussian shape of membership function by [11] .
The 2nd order fuzzy set of a given MF (x) is the area between
d+ and d�, where d+, and d� are the upper and the lower crisp
boundaries of the 2nd order fuzzy sets, respectively, as shown
in Figure 2 [2]. The expressions to determine its crisp bound-
aries are (9), and (10):

� � � �� �d x MF xj i j i
� � �min ,1 � (9)

� � � �� �d x MF xj i j i
� � �max ,0 � (10)

Formula (9) and formula (10) are based on the assump-
tions that the height of the slice of the 2nd order fuzzy region,
bounded by d+ and d� , at point x is equal to 2� where
� � [0, 0.3679] and these boundaries are equidistant from
MF (x). To obtain the ranges for the shape forming para-
meters of the MFs, it should be assumed that these 2nd order
fuzzy sets are MF search spaces. Therefore, all MFs with
acceptable parameters should be inside the area. In the gen-
eral case the intervals of acceptable values for every MF shape
forming parameter (e.g., �c � [c11, c22], and �� � [�11, �22]
for Gaussians) may be determined by solving formulas (8),
(9), and (10). In practice, this may be done approximately
considering d+ and d� as soft constraints. For instance, c11
and c22 for Gaussians may be found as the maximum root and
the minimum root of the equation d+

� 1, which can easily is
to be calculated. This equation is based on the assumption
that a fuzzy set represented by the Gaussian must have a point
where it is absolutely true. �11, and �22 can easily be found
from the following four equations:
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where we choose �11 as minimum and �22 as maximum from
the roots. These equations are based on the assumption that
the acceptable Gaussians with [�11, �22] should cross the
2nd order fuzzy region slices at points x � c � �. There are
two options finding the constraints of Gaussian parameters.
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First, considering constraints as a hard constraint and it
follows: the lower and upper bounds of the center of the
Gaussian membership function will be chosen as cmin, and
cmax should be less than the values of c11 and c22 to satisfy
the search space constraint conditions of 2nd order fuzzy
sets as shown in Fig. 3. The lower, and upper bounds for
spread of Gaussian membership function �min , and �max
will be equal to �11 and �22, respectively to satisfy search
space constraint conditions of 2nd order fuzzy sets, as shown
in Fig. 2. A second option is to consider these constraints
as a soft constraint, i.e., [cmin, cmax] equal [c11, c22], and
[�min, �max] equal [�11, �22].

4 Linear Adapted Genetic Algorithm
(LAGA)
For tuning MF parameters a particular evolutionary algo-

rithm a genetic algorithm is chosen. Varying the crossover
probability rate Pc and mutation probability rate Pm the GA’s
control parameters provide faster convergence than constant
probability rates. Pc is set high at the beginning of the genera-
tion and decreases linearly with generations as in (13) [1].

As is known from the Standard Genetic Algorithm (SGA),
at the beginning of generation the randomized initial GA
population is diverse. This means that promising solutions
are scattered through the search space. So, Pc is high in the
initial generation, but over the generations these solutions
will generate even better solutions. This means that the popu-
lation converges to a smaller subset of the search space, and
the Pc value will decrease according to formula (13), where
there are large values for Pc(0.5�1.0), and small values of
Pm(0.0�0.005) [6], [13], and [3].
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M
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�

�
� � 	
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1

1 1 1( ) , , , (13)

where x is the number of generations, and M is the maxi-
mum of generations allowed. As is known, mutation is not
needed at the beginning of generation, where the members
of the population are very distinct. The value of Pm increases
linearly as a function of the number of generations to exploit
the improved solution in the established region of the current
best solution. This is clear from equation (14).
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� 	
0005

1
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.
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5 Proposed genetic algorithm with
constrained search space
The main aspects of the proposed LAGA for optimizing

FLNN are discussed below and the block diagram for the
LAGA optimization process is shown in Fig. 5.

5.1 Fuzzy model representation
This section discusses how the proposed FLNN is

formulated using the LAGA approach, where all the parame-
ters of the FLNN are represented in a chromosome. The
chromosome representation determines the GA structure.
With a population size (popsize), we encode the parameters of
each fuzzy model in a chromosome, as a sequence of elements
describing the input fuzzy sets in the rule antecedents fol-
lowed by the parameters of weights and the rule consequents.
Where the intervals of acceptable values for every MF shape
forming parameter (�c � [cmin, cmax], and �� � [�min, �max] for
Gaussians) are determined based on 2nd order fuzzy sets
for all membership functions, as explained in section 4. The
acceptable constraints for rule weights are between [0,1], and
for centroids they are the minimum and maximum values of
the output.

5.2 Coding of FLNN parameters
Fig. 1 shows n inputs (x1, x2, …, xn) and one output y.

Each of the input fuzzy variables is classified into m
reference fuzzy sets. Every reference fuzzy set is described by
a Gaussian membership function specified by two
parameters: center c and spread �, resulting in (2 × m × n)
parameters at the corresponding layer. Using the Wang
technique for generating rules from given data [16], the fuzzy
model has k rules from (m)n rules theoretically possible. This
means have k rule weights; w and k centroids represent-
ed by singletons b. Thus a total of 2(m × n+k) parameters
(2×mmembership_functions× nvariables+kweights+kcentroids) need
to be optimized using LAGA. The coded parameters of
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Fig. 2: Upper and lower boundaries of spread, � using a 2nd order
fuzzy set

Fig. 3: Upper and lower boundaries of center, c using a 2nd order
fuzzy set



FLNN are arranged as shown in Table 1 to form the chro-
mosome of the population.

5.3 Selection function
The selection strategy decides how to select individuals to

be parents for new ‘Childs’. Usually the selection applies
some selection pressure by favoring individuals with better
fitness. After procreation, the suitable population consists for
example of L chromosomes, which are all initially random-
ized. Each chromosome has been evaluated and associated
with fitness, the current population undergoes the reproduc-
tion process to create the next population, and the “roulette
wheel” selection scheme is used to determine the member of
the new population. The chance on the roulette-wheel is
adaptive and is given as Pl /	Pl, where

� �P
J

l Ll
l

�
	



��

�


�� �

1
1, , ,�

and Jl is the performance of the model encoded in the chro-
mosome measured in terms of the normalized Root Mean
Square Error (RMSE):
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where N is the number of point samples, � is the required

parameters to be optimized, y is the true output, y
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Chromosome Sub-chromosome of
inputs

Sub-chromosome of
rule weights

Sub-chromosome of
rule consequents

x1,…………, xn w1, ………, wk b1,………, bk

Parameters c1, �1, ………, cn, �n w1, ………, wk b1, ………, bk

2(m × n+k) (2m × n) k k

Gene 1000000000…0110100011 0100111111… 0111001010 …

Table 1: Coded parameters of FLNN
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Fig. 5: Block diagram for the LAGA optimization process



and �y is the model output, as shown in Fig. 4. The inverse of
the selection function is used to select chromosomes for
deletion.

5.4 Crossover and mutation operators
The mating pool is formed, and crossover is applied

and followed by a mutation operation following the LAGA
approach. Finally, after these three operations, the over-
all fitness of the population is improved. The procedure is
repeated until the termination condition is reached. The
termination condition is the maximum allowable number of
generations, or a certain value of (RMSE) required to be
reached.

6 Applications

6.1 Modeling the Mackey-Glass process
The process used as an object of modeling is defined by

the chaotic Mackey-Glass differential delay equation [8]:

� �
� �
� �

� �x t
x t

x t
x t�

�

� �
�

02

1
0110

.
.

�

�
(15)

The prediction of future values of this time series is
a benchmark problem, which has been considered by a num-
ber of connectionist researchers. A time window of the
process behavior is shown in Fig. 6. The sampling period used
in the numerical study is set to 0.1, initial condition x(0) � 1.2
and time delay � � 17. In according with [8], we use the
samples of x(t�18), x(t�12), x(t�6) and x(t) to predict x(t+6).

For the chaotic system, the model has four input variables
x(t�18), x(t�12), x(t�6) and x(t), and a single output x(t+6).

The values of every input variable are classified into three
reference fuzzy sets. Every reference fuzzy set is described
by a Gaussian membership function specified by two para-
meters: center c and spread �, resulting in 24 parameters
for inputs. Using the Wang technique for generating rules
from the given data [16], we have 25 rules from 81 rules
theoretically possible. This means we have 25 rule weights w
and 25 centroids represented by singletons b. Thus a total of
74 parameters (2 × 3membership_function× 4variables + 25weights +
+25centroids) need to be optimized using LAGA. The coded
parameters of FLNN are arranged as shown in Table 1 to
form the chromosome of the population. To describe the
LAGA optimization process, consider the block diagram
shown in Fig. 5. At the beginning of the process, the initial
population comprises a set of chromosomes. Every
chromosome has 74 genes, and every gene has 10 bits, so the
chromosome length is 740 bits.

Simulation Results
From the Mackey-Glass time series x(t) (15), we extracted

3000 input-output pairs. The first 1000 data samples were
used to build the fuzzy model, while the remaining 2000 data
samples were used for model testing. Fig. 7 depicts the cor-
responding membership functions before and after training
using LAGA. There were 420 generations, and 60 minutes of
computation time using MATLAB and PC 400 MHz with
64 MB of RAM. Fig. 8 shows that the FLNN model follows
the actual process. The MSE is 0.0009 and the RMSE is 0.14
as shown in Fig. 9.

Figure 10 shows the shape of constraints of membership
functions based on second order fuzzy sets, as explained in
section 3 with �=0.3.
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6.2 Nonlinear discrete time process modeling
and identification

This example is taken from [12], [15], in which the plant
to be identified is governed by the differential equation (19):

� � � � � � � �� �y k k k g u k� � � � �1 03 06 1. . (19)
where the unknown function has the form
� � � � � � � �g u u u u� � �06 03 3 01 5. sin . sin . sin� � � .

The plant is modeled using FLNN, as described in section
2. The model has three input variables u(k), y(k), and y(k�1)
and a single output y(k+1), treated as linguistic variables. The
universe of discourse of every variable is partitioned into five
fuzzy sets with symmetrical Gaussian membership functions.
There are 30 parameters at the input of the FLNN model.
Using the Wang technique for generating rules from the
given data, we have 20 rules. This means we have 20 weights,
and 20 centroids represented by singletons. Thus a total of 70
parameters (2  5membership_functions  3variables + 20weights +
20centroids) need to be optimized using LAGA. The learning
procedure of LAGA is applied as in the first numerical exam-
ple. Fig. 5 shows the block diagram for the LAGA
optimization process for optimizing the FLNN model
parameters of the second numerical example. The process
starts with zero initial conditions. The first 250 data points
are used to build the fuzzy model at , while the remaining
450 data points are used to identify an FLNN model. As
explained in the first application we determined the con-
straints for this application based on second order fuzzy sets
with �=0.28. Fig. 11 shows that the FLNN model has a good

match with the actual model, with an MSE of 0.0473, and an
RMSE of 0.0607, as shown in Fig. 12. Fig. 13 depicts the
membership functions for each input variable before and
after training using LAGA. Fig. 14 shows the output model
and the plant for the input:
� � � �u k k� � � � �05 2 250. sin � for 1 k 250 and 501 k 700,

and
� � � � � �u k k k� � � �05 2 250 05 2 25 25. sin . sin� � for 1 k 500.
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7 Conclusion
The paper deals with modeling of nonlinear systems and

processes using fuzzy logic neural networks. Reference data
driven identification of parameters of fuzzy logic neural net-
works utilizing genetic algorithms has been proposed and
tested. Specification of parameter constraints related to in-
put reference fuzzy sets are based on 2nd order fuzzy sets.
The problem of constrained nonlinear optimization is solved
based on a genetic algorithm with variable crossover and
mutation probabilities rates, LAGA [Attia, 2001]. The paper
reports the results in dynamic process identification, predic-
tion of time series in particular. The performance of the
nonlinear models for time series prediction is examined. The
simulation results of the application examples indicate the
effectiveness of the proposed LAGA approach as a promising
learning algorithm.
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Fig. 14: Outputs of the plant (solid gray line), and FLNN model
(dashed line) for the input
� � � �u k k� � � � �0 5 2 250. sin � for1 k 250 and 501 k 700,

and
� � � � � �u k k k� � � �0 5 2 250 0 5 2 25 25. sin . sin� � for 1 k 500
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