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Abstract: This paper considers the analysis of exponentiated Weibull family distributed lifetime data
observed under Type II progressive interval censoring with random removals, where the number of units
removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the
parameters and their asymptotic variances are derived. The formula to compute the expected length of time
is given. An example is discussed to illustrate the application of results under this censoring scheme.
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INTRODUCTION
           

Supposed that n subjects are randomly selected at the beginning of study and the study will be terminated
when there are k or more failed subjects. Let Li, be the predetermined inspection times. Under a type II1,2,...i =
progressive interval censored inspection scheme, that trial is terminated after the Mth inspection if the total number
of failed subjects is equal to or exceeds k. Suppose that at the ith inspection, ki failed subjects are observed and
ri subjects are fixed removed from the test. In other words, ki is the number of failed subjects between any two

successive inspections and Li, where L0 = 0. Denoted , the test is terminated when 1iL −
1

j

j i
i

kζ
=

=∑ 1M kζ − <

and , for the predetermined integer value k, .M kζ ≥ 0 k n< <
Xiang & Tse[19] point out that the   and  where M is random and1 2( , ,..., )MK k k k= 1 2 1( , ,..., )MR r r r −=

corresponds to the number of inspections before the termination of the experiment, the joint likelihood function
of ki and M, conditional on  ri, is given by
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Note that ki and M are random variables in equation (1.1) , to ensure that there at least k failed subjects at
the end of the study, the number of subjects removed at each inspection time, ri , is restricted to be any integer

value between 0 and  , thus,  ri would not be affected by ki for all .
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Xiang & Tse[19] concluded that, the likelihood function under progressive censoring type II is obtained as a
special case of equation (1.1) when all ki 's are fixed to be 1 and , where x(i) is the ith ordered survival( )i iL x=

time. By all previous condition, it reduces to the type II censored if  for  and  .0ir = 1,2,..., 1i m= − mr n k= −
Extensive publications can be found in the literature which discuss the statistical inference for censored data

under various lifetime distribution models[1,6,9]. In particular, intensive study has been conducted for exponential
lifetime data (Leslie & Eeden[7]; Patel & Gajjar[11]; Pettitt et al.[12]; Xu & Yang. 

Although progressive censoring occurs frequently  in many applications, there are relatively few works on it.
Some early works can be found in Cohen[3], Mann[8], Thomas  & Wilson[15], Viveros & Balakrishnan. Readers can
refer to the book Balakrishnan & Aggarwala[1] for more details on the methods and applications of this topic.
However, all these works assumed that the number of units being removed from the test is fixed in advance. In
practice, it is impossible to pre-determine the removal pattern. Thus, Yuen & Tse[17,16] and Yang &Yuen[20]

considered  the  estimation  problem  when  lifetimes  collected under a Type II progressive censoring with
random removals. 

Model: The probability density function of the exponentiated Weibull family with two shape parameters β and θ,
and scale parameter α given by

(2.1)
( )1 1.( ; , , ) ( ).( ) [1 ]

xxxf x e e
β

β
β θααθ βα β θ

α α

⎛ ⎞−− ⎜ ⎟− −⎝ ⎠= −

Where the corresponding cumulative distribution function is[10]0 , , 0;x andα β θ< < ∞ ≥
 

(2.2)( ; , , ) [1 ]
x

F x e
β

θαα β θ
⎛ ⎞−⎜ ⎟
⎝ ⎠= −

From equation (2.1), different special distributions can be obtained such as:

C For β = 2, the probability density function and distribution function for the exponentiated exponential
distribution introduced by Gupta et al.[4] will be

( ) ( ) 1( ; , ) ( ). (1 )
x x

f x e e θα αθθ α
α

− − −= −

(2.3)( ; , , ) [1 ]
x

F x e θαα β θ
⎛ ⎞−⎜ ⎟
⎝ ⎠= −

respectively.

C For β = 2, the two parameter Burr type X distribution with probability density function  distribution function
are given by

2 2( ) ( ) 1
2

2( ; , ) ( ). [1 ]
x x

f x xe e θα αθα θ
α

− − −= −

(2.4)2( ; , , ) [1 ]
x

F x e θαα β θ
⎛ ⎞−⎜ ⎟
⎝ ⎠= −

C For β = 1, the probability density function for the Weibull distribution and  cumulative distribution function
will be,
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( )
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and

(2.5)
( )

( ; , ) 1
x

F x e
β

αα β
−

= −
respectively.

C By taking θ = 1 and β = 1, the probability density function for the exponential distribution and  cumulative
distribution function are given by, 

1( ; ) ( ).
x

f x e αα
α

−
=

and

(2.6)( ; ) 1
x

F x e αα
−

= −
respectively.

C The probability density function and distribution function for the Rayleigh distribution may be obtained by
putting θ = 1 and β = 1, that is                                           

2( )2( ; ) ( ).( ).
xxf x e αα
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−

=

and

(2.7)
2( )

( ; ) 1
x

F x e αα
−

= −

Mle with Fixed Removal: Using the cumulative distribution function which is given by (2.2), and a progressive
type II interval censored scheme suggested by Xiang & Tse[19] in (1.1), the likelihood function and the logarithm
the likelihood function as following  

(3.1)
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respectively.

Thus, the maximum likelihood estimates  and  can be obtained by maximizing (3.2) with respect toˆˆ ,α β θ̂
α,β and θ ; that is , by simultaneously solving the estimating equations,
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(3.3)
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Again, to solve the system of the non linear equations )3.3(, )3.4( and )3.5(, restoring to numerical techniques
and mathematical packages. 

The asymptotic variance covariance matrix of the estimators of the parameters is obtained by inverting the
Fisher information matrix in which elements are negatives of expected values of the second partial derivatives of
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the logarithm of the likelihood function. Denote the Fisher information matrix associated with and θ by,α β

, where1
ˆ ˆˆ( , , )I α β θ

(3.6)
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Not  that closed from expressions of the expected values of these second order partial derivatives are not
readily available. These terms can be evaluated by using numerical methods. Furthermore, define

. The joint asymptotic distribution of the maximum likelihood estimators of α,β and θ1
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Mle with Random Removal: Under random removal; Xiang & Tse[19] derived the likelihood function as follows
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where and P(R) does not involve the parameters. By assuming to follow a binomial
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distribution with parameter π, the probability of ri subjects removed from the test at the i th inspection time in
equation (4.2), also
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(4.3)
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Because Equation (4.3) does not depend on the parameters α,β, and θ, the maximum likelihood estimators of π
is given by
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Note that π is only a parameter of a random removal pattern and provides no information to the survival
distribution of the product. Because P(R) does not depend on the parameters α,β and θ, so, 
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Denote the Fisher information matrix associated with α, β, θ, and π by ,( , , , )I α β θ π
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Special Cases: Many special cases can be obtained from results derived in sections (3) and (4); this section is
concerned with these results.

Progressive Type II Interval Censored for Exponential & Weibull Distribution If θ = 1, deduced the
exponentiated Weibull random variables under progressive type II interval censored to Weibull random variable
under this type, these results agree those established by Xian & Tse[17] in section (3.3).

When the parameters θ = 1 and β = 1, exponentiated Weibull random variables under progressive type II
interval censored reduced to exponential distribution under the same type. For Reyleigh distribution and if θ = 1,
we consider the case under progressive type II interval censored when the scale parameter β = 2.

Progressive Censoring Type II is obtained as a special case when all ki's are fixed to be 1 and ,( )i iL x=
where x(i) is the ith ordered survival time.

Type II Censored: By all previous condition, Progressive Type II Interval Censored reduces to the type II
censored if  for  and .0ir = 1,2,..., 1i m= − mr n k= −

Expected Length of Time: In practical applications, an experimenter may be interested to know whether the test
can be completed within a specified time. This information is important for an experimenter to choose an
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appropriate sampling plan because the time required to complete a test is directly related to the cost.   
Let ω denote the length of the study; the study will be terminated when k or more subjects failed. Let beMζ

the total number of  failed subjects at time LM; then .
1

M

M i
i

kζ
=

=∑ { } { }/ /r M r M MP L R P k and k Rω ζ ζ= = ≥ <

To evaluate this probability, we consider the two cases when M = 1 and M > 1 separately.
Suppose that 
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then, expected length of time with random removal as follow is 
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Case 2: For M > 1          

(6.4)
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so,
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where ,  and P(R) is given in equation (4.2).
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Following Yuen & Tse[21]; Expected length of time of a type II progressive censoring test without removal can
be found when all are fixed to be one and  where t(i) is the ith ordered survival time will be'ik s ( )i iL t=
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By all previous condition, expected length of time under progressive type II interval censored reduces to
expected length of time of type II censoring test without removal if  for  and 0ir = 1, 2,..., 1i m= − mr n k= −
as follow

(6.7)
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If n = k expected length of time of complete sampling case with n test units from exponentiated Weibull
distribution can be obtained as follow
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The time of complete sampling with n test units is given by ,then; the expected value of the largest( )( )nE X
order statistics X(n) from exponentiated Weibull distribution will be
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The ratio of the expected time under different schemes to the expected time under complete sampling namely;
ratio of expected experiment times (REET).

(6.10)
exp
exp

Expected eriment time Under different schemesREET
Expected eriment time Under Complete Sample

=

Note that the REET does not depend on the scale parameter α . Suppose that an experimenter wants to observe
the failure of at least k complete failures when the test is anticipated to be conducted under different schemes.
Then, the REET provides important information in determining whether the experiment time can be shortened
significantly if a much larger sample of n test units is used and the test is stopped once k failures are observed.

A Numerical Illustration: There are no explicit forms for obtaining estimators for the exponentiated Weibull
distribution under progressively type II interval censored samples based on random removals. Therefore, numerical
solution and computer facilities are needed. 

Using “MATHCAD” (2001), a sample size 50 was generated from the exponentiated Weibull, with parameters
 based on progressive type II interval censoring with random removal.400, .33 2andα β θ= = =

Suppose that n = 50 subjects are randomly selected at beginning of the study and the study will be terminated
when there are k = 25 or more failed. The trial is terminated after the Mth inspection if the total number of failed
subjects is equal to or exceeds k = 25. The results are

0.3808 4058.89755 1337.95834 590.799515 57.3752252
0.3881 5334.48211 1415.31312 677.729774 59.263688
8.1018 6026.21471 2078.52523 706.33232 76.0171115
18.61 6146.56512 2283.30517 819.542732 152.654109
30.248 7371.86852 2380.14174 832.86488 165.228838
41.988 8324.08605 2959.00224 892.151797 342.373628
45.311 22093.2139 3127.3036 932.87102 470.691274
45.434 27362.5582 3141.12487 1129.45859 474.782255
47.873 55111.3181 3287.96863 1235.18208 551.576157
48.921 107214.406 3959.13494 1317.09331 576.290203 
      

To check adequacy of these models to these generated data, and using Chi-square goodness of fit test is carried
out, we conclude that the models provides a good fit to the present data at 5% level of significance. Using
simulated data, we have the following:

C Number of failed subjects k1 = 5 between two successive inspections  and  are1 30.248L = 0 0L =
 and .  None  subjects  selected  at  random from this inspection time0.381, 0.388, 8.102, 18.61 30.248

r1 = 0.
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C The second inspection time L2 = 165.299; Number of failed subjects k2 = 10 between L2 and L1 are 41.988,
 . The subjects removed45.31, 45.434, 47.873, 48.92,57.375, 59.264, 76.017, 152.654 165.229and

from the test are r2 = 1 is .33.959 10×
C Number of failed subjects k3 = 5 at third inspections L3 = 576.29 are 342.374, 470.691, 474.782, 551.576 and

576.29. Two additional randomly selected  from this inspection time; where r3 = 2 (590.8, 3.141x103).
C The fourth inspection time L4; Number of failed subjects k4 between L4 and L3 are 677.73, 706.332 and

819.543. The subject removed from the test are r4 = 1 is 7.372×103.
C Number of failed subjects k5 = 4 at last inspection     are 823.865, 892.152, 932.871 and3

5 1.129 10L = ×

1.129 × 103. The remaining survivors until the inspection are 3
5 1.129 10L = ×

1235.2 2283.30517 4058.89755 22093.2139
1317.1 2380.14174 5334.48211 27362.5582
1338 2959.00224 6026.21471 55111.3181
1415.3 3141.12487 6146.56512 107214.406
2078.5 3287.96863 8324.08605
In summarizing these data, we record: 

L1 = 30.248 L2 = 165.229 L3 = 576.29 L4 = 819.543 L5 = 1.129 × 103

k1 = 5 k2 = 10 k3 = 5 k4 = 3 k5 = 4
r1 = 0 r2 = 1 r3 = 2 r4 = 1 r5 = 19

Using the mathematical computing package “MATHCAD” (2001) and equations in section (3), maximum
likelihood estimates  for unknown parameters are calculated, i.e., we haveˆ ˆˆ , andα β θ , andα β θ

ˆ ˆˆ 390.588, 0.328 2.117andα β θ= = =
Again, using a computing package  “MATHCAD”, the approximate variances and covariance of the maximum

likelihood estimates  were calculated as described in section (3) and are given as ˆ ˆˆ , andα β θ

8ˆ( ) 1.274 10Var α = × ˆ( ) 4.844Var β = ˆ( ) 617.716Var θ =
4ˆˆ( , ) 2.485 10Cov α β = × 5ˆˆ( , ) 2.805 10Cov α θ = − × ˆ ˆ( , ) 54.722Cov β θ = −

As a special case, progressive type II censored data (when all ki 's are fixed to be 1 and , where x(i)( )i iL x=
is the ith ordered survival time), we have the following realizations:

(1) 0.177x = (2) 0.181x = (3) 13.279x = (4) 35.659x = (5) 37.903x =

r1 = 0 r2 = 1 r3 = 2 r4 = 1 r5 = 41

The estimates  for unknown parameters are obtained asˆ ˆˆ , andα β θ , andα β θ
ˆ ˆˆ 65.455, 0.378 3.077andα β θ= = =

with following

ˆ( ) 73.03Var α = 3ˆ( ) 7.839 10Var β −= × ˆ( ) 0.334Var θ =
ˆˆ( , ) 3.746Cov α β = ˆˆ( , ) 14.512Cov α θ = − ˆ ˆ( , ) 0.088Cov β θ = −
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For type II censored; let  and . From the realizations, we obtained(5) 1 2 3 437.903, 0x r r r r= = = = = 5r n k= −
the following estimates

ˆ ˆˆ 68.711, 0.378 3.081andα β θ= = =
with following 

ˆ( ) 145.889Var α = ˆ( ) 0.046Var β = ˆ( ) 0.446Var θ =
ˆˆ( , ) 5.327Cov α β = − ˆˆ( , ) 20.234Cov α θ = ˆ ˆ( , ) 0.117Cov β θ = −

For a given value of M, the expected length of time under progressive type II interval censored  decreases as
the sample size increases. The duration of a progressive type II interval censored with fixed removal

 is longer than a progressive type II interval censored with random removals ].[ ( / ) 7.117]ME L R = [ ( ) 2.53]ME L =
Also, expected length of time under progressive type II censored, type II censored and complete sample are

respectively.( ) ( ) ( )( / ) 3.449, ( ) 1.226 ( ) 12.806k k kE X R E X and E X= = =
Using ratio of expected experiment times (REET) in (6.10), progressive interval type II censored with fixed

and random removal, progressive type II censored with random removal and type II censored 0.556, 0.198, 0.269
and .0957 respectively. Note that; the values of the REET of different schemes and complete sampling plan
decrease as n increases; also, the REET does not depend on the scale parameter α. 
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