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Abstract End milling is one of the most common metal
removal operations encountered in industrial processes. Prod-
uct quality is a critical issue as it plays a vital role in how
products perform and is also a factor with great influence on
manufacturing cost. Surface roughness usually serves as an
indicator of product quality. During cutting, surface roughness
measurement is impossible as the cutting tool is engaged with
the workpiece, chip and cutting fluid. However, cutting force
measurement is easier and could be used as an indirect pa-
rameter to predict surface roughness. In this research work, a
correlation analysis was initially performed to determine the
degree of association between cutting parameters (speed, feed
rate, and depth of cut) and cutting force and surface roughness
using adaptive neuro-fuzzy inference system (ANFIS) model-
ing. Furthermore, the cutting force values were employed to
develop an ANFIS model for accurate surface roughness
prediction in CNC end milling. This model provided good
prediction accuracy (96.65 % average accuracy) of surface
roughness, indicating that the ANFIS model can accurately
predict surface roughness during cutting using the cutting
force signal in the intelligent machining process to achieve
the required product quality and productivity.

Keywords Intelligent machining . Endmilling . Cutting
forces . Surface roughness . CNC . ANFIS

1 Introduction

Machining processes are fundamentally complex, nonlin-
ear, multi variate, and often subjected to various un-
known external disturbances. A machining process is
usually performed by a skilled operator who uses
decision-making capabilities based on the intuition and
rules of thumb gained from experience. This process is
not accurate enough and in many cases product faults
occur. For this reason and to realize highly productive
and flexible machining, a reliable, automated machining
system with intelligent functions (intelligent machining)
is needed [1, 2]. Figure 1 depicts the concept of an
intelligent CNC machine. Intelligent NC machine tools
have three feedback loop levels for intelligent functions.
Among the intelligent functions, cutting force monitoring
is an important issues, as it can tell the limits of cutting
conditions, workpiece surface quality, and tool wear, as
well as detect and prevent tool breakage and chatter,
compensate tool deflections, and optimize machining
processes through a model-based adaptive control system
and other process information, which are indispensable
for process feedback control [3–6].

In this research work, cutting force is used to predict
surface quality during cutting in an end milling process.
Surface quality plays a vital role in milled surfaces by
significantly improving fatigue strength, corrosion resis-
tance, and creep life. Moreover, surface quality affects
several functional attributes of parts, such as contact
causing surface friction, wear, light reflection, heat trans-
mission, ability of distributing and holding lubricant,
coating, and resisting fatigue [7, 8].
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To achieve higher levels of surface quality, correla-
tion modeling of cutting force and surface roughness is
required [9–11]. Modeling based on cutting force and
surface roughness data is accomplished by soft comput-
ing tools [12–14]. Soft computing techniques are useful
when exact mathematical information is not available
and these differ from conventional computing in that
they are tolerant of imprecision, uncertainty, partial
truth, approximation, and met heuristics [15, 16].
ANFIS is one of the soft computing techniques that
play a significant role in input–output matrix relation-
ship modeling. It is used when subjective knowledge
and expert suggestions are significant to defining objec-
tive function and decision variables. ANFIS is ideal to
predict surface roughness based on input variables due
to the nonlinear condition in the machining process
[17–21].

As a conclusion of the above review, the aim of the
present work is to investigate the use of cutting force-
based ANFIS modeling for accurate surface roughness

prediction in end milling operation for intelligent
machining.

2 Experimental setup

The experimental setup is shown in Fig. 2. The experiments
were performed using a CNC end milling machine. A high-
speed steel four-flute end milling cutter with a diameter of
7/16 in (11.1 mm) was used for dry machining slots of Brass
(60Cu40Zn) blocks under specific machining conditions, as
shown in Table 1. These machining conditions were selected
based on the tool maker’s recommendations. Brass material
with Vickers hardness of 125 and chemical composition of
60 % Copper and 40 % Zinc was used as workpiece material
with 40×40×20 mm dimensions.

The surface roughness (Ra) was measured with a stylus-
based profilometer (Surtronic 3+, accuracy of 99 %). The
average surface roughness was calculated for three different
measurements under the same conditions with a sampling

Fig. 1 System configuration of
the intelligent NC machine tool
[1]

Fig. 2 Experimental setup
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length of Lc=2.5 mm at a specific area of the workpiece. The
measurements’ direction was parallel to the cutting direction
and perpendicular to the lay of surface anomalies. On the other
hand, the cutting forces were measured using a strain gauge-
based analogue dynamometer. The analogue values obtained
from the dynamometer were amplified, filtered with 10 Hz
low bass filter and recorded on a computer using a 12 bit
analogue-to-digital converter.

3 Experimental results and ANFIS modeling

The measured cutting forces and surface roughness
shown in Table 2 were used as the training data set to
build the ANFIS model. Five network layers were used
by ANFIS to perform the following fuzzy inference
steps as shown in Fig. 3: layer 1—input fuzzification,
layer 2—fuzzy set database construction, layer 3—fuzzy
rule base construction, layer 4—decision making, and
layer 5—output defuzzification [22–24].

To explain this model simply, two rules and two linguistic
values for each input variable are suggested.

Layer 1 The output of the node is the degree to which the given
input satisfies the linguistic label associated to this node. Usu-
ally, bell-shaped membership functions are chosen to represent
the linguistic terms because the relationship between the cutting
parameters and surface roughness is not linear (Fig. 4a).

First parameter membership functions

Ai xð Þ ¼ exp −0:5 x−ai1ð Þ=bi1ð Þ2
h i

ð1Þ

Second parameter membership functions

Bi yð Þ ¼ exp −0:5 y−ai2ð Þ=bi2ð Þ2
h i

ð2Þ

where ai1, ai2, bi1, and bi2 are the parameter set.
As the values of these parameters change, the bell-shaped

functions vary accordingly, as shown in Fig. 4b, thus

Table 1 Cutting parameters
levels Cutting parameters Unit Symbol Level 1 Level 2 Level 3 Level 4 Level 5

Spindle speed rpm n 750 1000 1250 1500 1750

Feed rate mm/min f 50 100 150 200 250

Depth of cut mm t 0.3 0.5 0.7

Table 2 Measured cutting forces and surface roughness (training data set)

n (rpm) 750 1000 1250 1500 1750

f (mm/min) t (mm) F (N) Ra (μm) F (N) Ra (μm) F (N) Ra (μm) F (N) Ra (μm) F (N) Ra (μm)

50 0.3 25.61 1.1 15.26 0.96 10.63 1.18 11.31 0.6 7.21 0.84

0.5 39.81 1.36 30.53 1.12 14.87 1.6 19.80 0.82 12.04 0.82

0.7 50.61 1.9 37.54 1.36 22.63 1.08 27.59 1.02 12.73 1.54

100 0.3 33.42 1.28 17.03 1.02 10.82 1.18 14.87 0.86 20.52 0.98

0.5 64.88 2.06 44.05 1.44 21.21 1.3 30.48 1.02 45.45 1.16

0.7 106.83 2.22 62.94 1.78 25.50 1.14 40.61 1.24 73.36 1.22

150 0.3 31.14 1.42 21.21 1.54 18.44 1.24 20.52 1.32 31.62 1.1

0.5 81.84 2.63 50.22 1.54 22.80 1.34 37.01 1.36 70.04 1.26

0.7 113.81 2.96 78.49 2.24 32.53 1.22 52.40 1.38 92.44 1.62

200 0.3 30.41 1.54 18.38 1.16 22.63 1.26 25.24 1.56 39.56 1.32

0.5 78.77 3.5 61.62 2.28 30.41 1.5 49.24 1.56 86.56 1.62

0.7 144.90 3.52 102.53 2.64 42.64 1.44 56.82 1.4 104.24 1.6

250 0.3 70.21 1.82 23.02 1.58 25.50 1.66 35.47 1.32 56.65 1.48

0.5 58.67 2.5 61.59 2.96 28.32 1.38 54.08 1.26 106.96 1.74

0.7 190.80 5.5 106.78 3.14 38.18 1.62 49.52 1.42 107.94 1.56
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exhibiting various forms of membership functions on linguis-
tic labels Ai and Bi. The parameters in this layer are referred to
as principle parameters.

Layer 2 Each node computes the firing strength of the asso-
ciated rule. The nodes of this layer are called rule nodes. The
outputs of the top and bottom neurons are as follows:

Top neuron

α1 ¼ A1 xð Þ � B1 yð Þ ð3Þ

Bottom neuron

α2 ¼ A2 xð Þ � B2 yð Þ ð4Þ

Layer 3 Every node in this layer is labeled byN to indicate the
normalization of the firing levels. The output of the top and
bottom neurons is normalized as follows:

Top neuron

β1 ¼ α1= α1 þ α2ð Þ ð5Þ

Bottom neuron

β2 ¼ α2= α1 þ α2ð Þ ð6Þ

Layer 4 The output of the top and bottom neurons is the
product of the normalized firing level and the individual rule
output of the first rule and second rule, respectively.

Top neuron

β1z1 ¼ β1 a1x þ b1yð Þ ð7Þ

Bottom neuron

β2z2 ¼ β2 a2x þ b2yð Þ ð8Þ

Layer 5 The single node in this layer computes the overall
system output as the sum of all incoming signals, i.e.,

z ¼ β1z1 þ β2z2 ð9Þ

If a crisp training set ((xk, yk), k=1, . . . ,k) is given, then the
parameters of the hybrid neural net (which determine the
shape of the membership functions of the premises) can be
learned by descent-type methods. The error function for pat-
tern k can be given by:

Ek ¼ yk−ok
� �2 ð10Þ

Layer4Layer1 Layer2 Layer3 Layer5

Adaptive node Fixed node

A1

A2

B1

B2

x

y

α1

α2

β1
T N

N

z
β1Z1

x     y

T

x     y
A1(x)

B2(y)

A2(x)

B1(y)

β2

β2Z2

Fig. 3 ANFIS architecture for a
two-input Sugeno fuzzy model
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Fig. 4 Initial and final membership function of speed. a Initial membership function of speed. b Final membership function of speed
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where yk is the desired output and ok is the computed
output by the hybrid neural net [24].

4 ANFIS prediction model results and discussion

Figures 5, 6, 7, and 8 show the effects of the machining
parameters on surface roughness and cutting force. In Fig. 5
at low depth of cut level (0.3 mm), it can be seen that the
surface roughness decreases with increasing spindle speed
and decreasing feed rate (Fig. 5a). This is because surface
roughness is defined as the machining marks on the work-
piece surface related to the geometry of the tool edge (Fig. 6
and Eq. 11) which is proportional to the feed rate [25, 26].

Ra ¼ f 2z
tr18

ffiffiffi
3

p f z≤2trsin ψð Þð Þ ð11Þ

Figure 5b shows that the resultant cutting force decreases
with increasing rotational speed at a low feed rate range (50
to 100 mm/min) for all ranges of cutting speed. But at feed
rate ranging from 100 to 250 mm/min, the cutting force
decreases with increasing rotational speed for speed rang-
ing from 750 to 1350 rpm and then the cutting force in-
creases with increasing rotational speed for speed ranging
from 1350 to 1750 rpm. This is mainly attributed to built-up
edge formed at low speed, where the chip parts become a
stationary body of highly deformed material attached to the
cutting edge. The growth and rapid breakage of the
built-up edge cause a rough surface on the machined
part [27–29].

At medium and high depth of cut levels from 0.5 to
0.7 mm and feed rate ranging from 50 to 100 mm/min, the
surface roughness and cutting force decrease with increas-
ing rotational speed for all cutting speed ranges. At feed
rate ranging from 100 to 250 mm/min, the surface rough-
ness and cutting force decrease with increasing rotational
speed for speed ranging from 750 to 1350 rpm; then the
surface roughness and cutting force increase with increas-
ing rotational speed for speed ranging from 1350 to
1750 rpm as shown in Figs. 7 and 8.

From the above analysis, it can be seen that the cutting
parameters against the cutting force show the same trend as
the relations between cutting parameters and surface rough-
ness. This has led to the conclusion that there is a strong
correlation between the surface roughness and cutting force.
Hence, it is possible to predict the curve trend of surface
roughness from the cutting force.

Figure 9 shows the correlation between the cutting force
and surface roughness. This figure indicates that surface
roughness increases with increasing cutting force and vice
versa. It is also clear that the trend of surface roughness change
is steady at low cutting force ranging from 7 to 120 N.
However, for cutting ranges of more than 120 N, surface
roughness rapidly changes.

a) Variation of surface roughness with cutting parameters b) Variation of cutting force with cutting parameters
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Fig. 5 The variation of surface roughness and cutting force with spindle speed and feed rate at 0.3-mm depth of cut. a Variation of surface roughness
with cutting parameters. b Variation of cutting force with cutting parameters
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5 ANFIS model verification

Thirty-two random experiments were additionally carried out
under different machining conditions for model verification
(Table 3). The measured and predicted surface roughness
values are also summarized in Table 3. The plot of measured
and predicted surface roughness using the ANFIS model is
shown in Fig. 10. Appropriate assent is evident between the
measured and ANFIS-predicted surface roughness values.
This close assent obviously displays that the ANFIS model
can be used to predict surface roughness with good conformi-
ty. Thus, the proposed ANFIS model offers a promising

solution to predicting roughness values in the specific range
of parameters.

In addition, Fig. 10 shows high surface roughness at low
and high levels of spindle speed (875 and 1625 rpm) and small
surface roughness values at medium levels of spindle speed
(1125 and 1376 rpm). There is also a big difference in surface
roughness between low levels of feed rate (75 to 125mm/min)
and high levels of feed rate (175 to 225 mm/min). Thus, it is
recommended to machine brass (60/40) materials using low
levels of feed rate (75 to 125 mm/min), medium levels of
spindle speed (1125 to 1375 rpm), and small depth of cut
levels.

a) Variation of surface roughness with cutting parameters b) Variation of cutting force with cutting parameters
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Fig. 7 The variation of surface roughness and cutting force with spindle speed and feed rate at 0.5-mm depth of cut. a Variation of surface roughness
with cutting parameters. b Variation of cutting force with cutting parameters

a) Variation of surface roughness with cutting parameters b) Variation of cutting force with cutting parameters
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Fig. 8 The variation of surface roughness and cutting force with spindle speed and feed rate at 0.7-mm depth of cut. a Variation of surface roughness
with cutting parameters. b Variation of cutting force with cutting parameters
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To investigate the ANFIS model prediction error, the error
percentage Ei and average error percentage Eav are calculated
using Eqs. (11) and (12), respectively, and are summarized in
Table 3.

Ei ¼
Rai−bRai
��� ���

Rai
� 100 ð11Þ

Eav ¼ 1

m

X
i¼1

m

Ei ð12Þ
Cutting force (N)
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e 
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(µ
m

)

Fig. 9 The variation of surface roughness with cutting force

Table 3 Comparison of measured and predicted surface roughness (Ra)

Test no. Parameters Measured Ra (μm) Predicted Ra (μm) Error Ei (%) Accuracy (%)

n (rpm) f (mm/min) t (mm) F (N)

1 875 75 0.4 43.86 1.42 1.4 1.41 98.59

2 0.6 77.10 2 2.1 5.00 95.00

3 125 0.4 72.35 1.96 2.07 5.61 94.39

4 0.6 98.98 2.36 2.2 6.78 93.22

5 175 0.4 81.06 2.25 2.12 5.78 94.22

6 0.6 126.57 2.66 2.58 3.01 96.99

7 225 0.4 107.17 2.36 2.26 4.24 95.76

8 0.6 125.61 2.61 2.55 2.30 97.70

9 1125 75 0.4 22.02 1.22 1.21 0.82 99.18

10 0.6 36.36 1.36 1.3 4.41 95.59

11 125 0.4 40.00 1.28 1.34 4.69 95.31

12 0.6 66.71 1.89 2.01 6.35 93.65

13 175 0.4 47.71 1.45 1.48 2.07 97.93

14 0.6 69.31 1.92 2.04 6.25 93.75

15 225 0.4 42.94 1.4 1.38 1.43 98.57

16 0.6 62.23 1.96 1.93 1.53 98.47

17 1375 75 0.4 20.62 1.19 1.2 0.84 99.16

18 0.6 23.35 1.18 1.21 2.54 97.46

19 125 0.4 23.60 1.14 1.21 6.14 93.86

20 0.6 32.80 1.33 1.26 5.26 94.74

21 175 0.4 22.02 1.22 1.21 0.82 99.18

22 0.6 33.97 1.32 1.27 3.79 96.21

23 225 0.4 34.06 1.29 1.27 1.55 98.45

24 0.6 39.41 1.32 1.33 0.76 99.24

25 1625 75 0.4 26.08 1.21 1.22 0.83 99.17

26 0.6 40.82 1.3 1.35 3.85 96.15

27 125 0.4 45.18 1.35 1.42 5.19 94.81

28 0.6 65.95 1.91 2 4.71 95.29

29 175 0.4 42.95 1.33 1.38 3.76 96.24

30 0.6 80.80 2.15 2.12 1.40 98.60

31 225 0.4 64.41 1.99 1.97 1.01 98.99

32 0.6 107.62 2.33 2.26 3.00 97.00

Average % 3.35 96.65
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where Ei is the percentage error of sample number i, Rai is

the measured surface roughness of sample number i, bRai is
the predicted surface roughness generated by the ANFIS
model, i=1,2,3,…; m is the sample number, and Eav is the
average percentage error of m sample data.

Figure 11 indicates that the average percentage error for
surface roughness prediction is 3.35 % (96.65 % accuracy). It
is also shown that the highest percentage of error for ANFIS
model prediction is 6.78 %. The low error level signifies that
the surface roughness results predicted by ANFIS are very
close to the actual experimental results. The low error and
high accuracy levels mean that the proposedmodel can predict
surface roughness satisfactorily.

6 Conclusion

In this research work, a cutting force-based adaptive neuro-
fuzzy approach for accurate surface roughness prediction
during cutting was established. First, 75 measured surface
roughness (Ra) and cutting force (F) values under different
cutting conditions were used as the training data set to build
the ANFIS model. The variations in surface roughness and
cutting force with the machining parameters (spindle speed,
feed rate, and depth of cut) were established. Second, a cor-
relation analysis was performed to determine the degree of
association between the cutting parameters with cutting force

and surface roughness. Finally, the model was verified using a
32 testing data set, and the average percentage accuracy
achieved was 96.65 %, indicating that it is possible to predict
surface roughness using an indirect cutting force measurement
based on the ANFIS model.
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