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Abstract 

This article is considered with the problem of estimating the parameters under type I 

Progressive censored, a new statistical model called mixed Rayleigh distribution is suggested; the 

maximum likelihood estimates for its unknown parameters and their approximate asymptotic 

variance covariance matrix are derived. An iterative procedure is developed and tested numerical 

example to obtain the new estimators and their variance covariance matrix. A Monte Carlo 

simulation is used to investigate the accuracy of this estimator and an example is given to 

illustrate the maximum likelihood estimate. 
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1. Introduction 

 

In the most simple life test we have one population and only one type of failure. For 

every item put on test we have the time it took for the failure to occur; we will denote the 

corresponding failure time density as )(xf i . Other; more general models are proposed and 

contrasted by Cox (1959). Thus we can also consider a life test in which the items in the single 

population are subject to more than one type of failure, which will be referred to as a competing 

risk situation. This model is realized in medical and actuarial work where the estimation and 

comparison of death rates from a particular cause require correction for deaths from other causes; 

or in tensile strength testing where there may be two or more types of failure, e.g., jaw breaks and 

fractures in the test specimen [see Oppenheimer (1971)]. Another generalization arises if we 

consider a situation in which we have s  distinct populations, and the probability that an item is in 

the
thi population is ip , 10  ip  , 1

1




s

i

ip . An item which is in population i  is subject only to 

the risk of failure of the 
thi type, which can be represented by a failure time density of the 

form )(xf i . The density corresponding to this life test will be referred to as a mixture of densities 

and expressed as 





s

i

ii xfpxf
1

)()(

 

One of the important families of distributions in lifetime tests is the Rayleigh distribution 

with probability density functions  
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and the survival functions is given by  
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When the 
2xy   in (1.1) and (2) give the probability density function and the 

cumulative distribution of Exponential distribution with scale parameter 2 . 

Mixed model is encountered in many fields of applied science, when population is not 

homogeneous, but is made-up from sub-populations, mixed in unknown proportions. In the 

present situation, individuals are of two types ( 2s ), the probability that an individual is of the 

first type being 1p  and probability that it is of second type is 2p , where 121  pp . An 
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individual of type I is subject only to the risk of failure of the first type. The probability density 

function and survival function of the mixed distribution will be 

)()()( 2211 xfpxfpxf                                                 (3) 

)()()( 2211 xRpxRpxR                                                (4) 

By using equations (1) and (2) in (3) and (4), probability density function and the survival 

function of mixed Rayleigh distribution will be   
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respectively. 

We now have the censoring occurring progressively which defined as: n  units are 

put on life test at time zero. At times mTTT ,...,, 21   numbers 121 ,...,, mkkk  of failure units are 

occurs, also predetermined numbers mrrr ,...,, 21  of live units are removed from 

experimentation, respectively. If the time of removal are fixed with mT   being the time of 

experiment termination and mr  being the number of surviving units at that time. Where 

mkkkk  ...21 .The likelihood function will be  
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where C  is a constant, k  is the number of failures, )(ix  is the lifetime of the 
thi  order 

statistic and ),;(),,;( 2121)(  ji TRxf are the density function and the survival function 

in (5) and (6) respectively. Progressive censoring schemes are carried out under the 

assumption that continuous monitoring is in place, if 0... 121  mrrr ,  progressive 

censoring type I reduces to single censoring type I.  

Most of literatures  confined its attention to just on Type I censored which will  draw 

from mixed model; for example,  Mendenhall and Hader (1958) derived the maximum likelihood 

estimators for the unknown parameters of the mixed exponential model using type I censored and 

studied their properties. Oppenheimer (1971) estimated the parameter of mixed exponential from 

complete and censored samples. Jones and Ashour (1976) discussed the same estimation problem 

using Bayesian approach, on characterization of mixtures were studied by, Nassar and Mahmoud 
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(1985), Nassar (1988), Gharib (1996) and Ismail and ElKhodary (2001). Many author interested 

with inferences on mixtures of exponential distributions among them Rider (1961), Everitt and 

Hand (1981), Al-Hussaini (1999), Bartoszewicz (2002) and Jaheen (2005). Radhakrishna et al. 

(1992) derived   maximum likelihood estimators of the parameters of two component mixture 

generalized gamma distribution. Also, Ashour and Abd-el Hafez (1984) and Ashour (1985) 

estimated the parameters of a Weibull exponential using maximum likelihood and Bayesian 

method for type I censored samples.  Also, Elsherpieny (2007) and Shawky and Bakoban (2009) 

estimated the parameters of mixed generalized exponentionally and Exponentiated Gamma 

distributions respectively. Mixture of Exponentiated Pareto and Exponential Distribution was 

studied by Hanaa and Abu-Zinadah (2010). 

In this study we shall confine our attention to just in introduce progressively type I 

censored sample and derive the maximum likelihood estimates for unknown parameters of two 

populations under this type; both of them will be have Rayleigh distributions. The   asymptotic 

variance covariance matrix   was obtained by taking the inverse of the information matrix, which 

required numerical integration. The organization of the paper is as follows: Section 2 maximum 

likelihood estimators are discussed. Asymptotic variance covariance matrix under progressively 

type I censored sample will derived in section 3. In section 4 an example will be discussed to 

illustrate the application of results. Finally, Conclusions are given in Section 5. 

 

2. Maximum likelihood estimators 

 

Now we have the censoring occurring progressively in m  stages at time iT , such 

that 1 ii TT . mi ,...,2,1 , and at the 
thi  stage of censoring ir  units, selected at random from 

the survivors, are withdrawn from the test. By using (1.5) and (1.6) in expression (1.7) and to log 

likelihood can be written as: 
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Taking partial derivatives of (8), we obtain the following maximum likelihood estimating 

equations; 
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Multiplying equation (9) by 1p  and adding 
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to both sides yields the following 
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Since, from (9) we also have that 
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We then obtain 
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From (10) we note that 
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Then (13), (14) will determine a successive substitution iterative scheme. 

If we examine the maximum likelihood estimating equations (9), (10), when we have no 

observed failures, i.e., 0k  we obtain 
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3. Asymptotic variance covariance matrix 

 

The asymptotic Variance covariance matrix can be written as the inverse of the 

information matrix, where the negative of the information matrix is defined as: 
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We determine the second partials by differentiating the first partials, equations (9) and (10), 
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The expected values of the above second partial derivatives will be calculated by 

transforming the original integrals into a form more suitable for numerical integration. Hill (1963) 

is also concerned with this problem but deals with less general case when ,1 2  are known and 

only the mixing proportion is estimated.  
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We explained how to find these values 71,..., SS  in the Appendix. Note that, the expected 

values of the first summations are variable quantities and the second summations equal zero. 
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4. Numerical examples 

 

In this section, we present results of some numerical experiments to compare the 

estimators performance of the different sample schemes proposed in the previous sections. 

 

4.1. Illustrative examples: Using “MATHCAD” (13), a sample of size 600 was generated 

random mixture of Rayleigh numbers with parameters 6.01  , 42  and 5.01 p  based on 

progressive type I censored which occurs at five stages 5m . Assume that at time 6.01 T , 

twelve units selected at random from the survivors, were censored (i.e. removed from the test). 

 At 22 T , ten additional randomly selected survivors were removed. Three additional randomly 

select survivors were removed at 4.33 T . At time 6.44 T , another two units selected at 

random from the survivors, and the test was terminated at 2.55 T  with three survivors.  

Table 1 shows the maximum likelihood estimators for the unknown parameters of the 

mixed Rayleigh model under progressive type I censored, as a special case, we show the 

maximum likelihood estimators for the unknown parameters in both of type I censored 

when 2.55  TT , thus, we have 423k  failures, and 123 kn survivors to be removed 

from the test and complete sample; using these data, we have 

 

 

 

Table 1 

Estimators Progressive Type I Censored Type I Censored Complete sample 

1p̂ 0.5431 0.512 0.497 

1̂  0.872 0.726 0.436 

2̂  4.816 5.034 3.924 

 Comparison between estimators of different sample schemes 

 

Again, Table 2 shows asymptotic variance covariance matrix of the maximum likelihood 

estimators 1p , 1 and 2  were calculated as described in section (3) and are given as 
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Table 2 

schemes 

Asymptotic variance covariance matrix 

)( 1pV  )( 1V  )( 2V  ),( 11 pCov  ),( 21 pCov  ),( 21 Cov  

Progressive Type I Censored 0.02175 0.0073 0.0098 -0.0724 -0.0088 0.0046 

Type I Censored 0.00841 0.0051 0.0091 -0.0681 -0.0064 0.0043 

Complete sample 0.0007 0.0004 0.0064 -0.0233 -0.0041 0.0032 

Comparison between asymptotic variance covariance matrix of different sample schemes 

When 5.01 p , the next figure shows comparisons on the graphs of Mixed Raleigh 

Distribution between different sample schemes (complete sample, progressive Type I censored 

and Type I censored). 

Figure 
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0 2 4 6
0

0.5

1

0.711

0.078

f

4.5340.05 x 
0 2 4 6

0

0.5

1

0.665

0.078

f

4.5340.05 x 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 
0 2 4

0

0.2

0.4

0.6

0.539

0.042

f

3.8540.023 x

0 2 4
0

0.5

1

0.548

0.036

f

3.8540.023 x



628   W. M. Afify 

For each row the same values from the scale parameters 1  and 2  as follow: 

5,1,4,6.0 2121   and 2.0,3 21     respectively. 

 

4.2. Simulation results: In the following, the maximum likelihood estimators under different 

samples schemes are compared via Monte Carlo simulation.  

Using the approximate maximum likelihood estimators as the starting value, the 

maximum likelihood estimators are obtained by solving the nonlinear Equations (2.6) and (2.7) 

using the Newton’s method. We generate a mixed Rayleigh distribution in type I progressive 

censored sample with 2.0,3 21   and 5.01 p  from a sample of sizes 15, 20 and 30. The 

simulations are carried out for different stages m . 

 

Tables 3 

Complete sample Type I Censored 
Progressive Type I 

Censored m n 

2̂ 1̂ 1p̂ 
2̂ 1̂ 1p̂ 

2̂ 1̂ 1p̂ 

0.194  3.101 0.495 0.225 3.246 0.437 0.281 3.341 0.393 2 

15 0.186 3.370 0.482 0.209 3.424 0.435 0.211 3.499 0.389 3 

0.174 3.414 0.459 0.258 3.490 0.421 0.215 3.577 0.354 5 

0.209 3.022 0.486 0.276 3.064 0.477 0.277 3.082 0.471 3 

20 0.204 3.162 0.483 0.248 3.196 0.469 0.253 3.248 0.469 4 

0.201 3.319 0.476 0.211 3.392 0.479 0.245 3.410  0.457 6 

0.204 3.010 0.505 0.214 3.083 0.532 0.216 3.111 0.540 3 

30 
0.207 3.102 0.511 0.234 3.143 0.541 0.269 3.199 0.556 4 

0.250 3.287 0.546 0.266 3.318 0.555 0.311 3.339 0.591 5 

0.316 3.590 0.564 0.333 3.639 0.568 0.337 3.689 0.594 8 

 

Tables 3 provide the maximum likelihood estimators with different Sample schemes as 

mentioned above. For all sample sizes, the maximum likelihood estimators under different 

samples schemes are almost the same values, but the complete samples estimators are the best for 

ever; however, it is seen that the progressive type I censored is better than the other samples, 

where it reduces the consumption of the sample size. 
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5. Conclusions 

 

In this study maximum likelihood estimation of the parameters of  a mixture of two 

Rayleigh distributions, 
2221

2
22

2
1121 ....),;(

xx

expexpxf






 has been examined in 

detail. The asymptotic variance covariance matrix was obtained by taking the inverse of the 

information matrix, which required numerical integration (Appendix). Also, we have considered 

the estimation procedure and asymptotic variance covariance matrix under various forms of 

censoring. 
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Appendix 

 

From (3.1) we have  
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Note that in the appendix we provide a means of calculating 1S  and the ensuing integrals 72 ...SS .  

By using the method previously 
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