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Abstract. This paper presents a novel application of fuzzy logic (FL) controller driven by an adaptive
fuzzy set (AFS) for position tracking of the telescope driven by electric motor. Also, the proposed
FL controller, driven by AFS, is compared with a classical FL control, driven by a static fuzzy set
(SFS). Both FL controllers algorithm use the position error and its rate of change as an input vector.
The mathematical model of the telescope driven by electric motor is highly nonlinear differential
equations. Therefore the use of the artificial intelligent controller, such as FL is much better than the
conventional controller, to cover a wide range of operating conditions. So, the output of FL control
is utilized to force the electric drives, of the telescope, to satisfy a perfect matching of the predefined
desired position of the telescope arms. Both of FL controllers, using AFS and SFS, are simulated and
tested when the system is subjected to a step change in reference value. In addition, these simulation
results are compared with the conventional Proportional-Derivative (PD) controller, driven by fixed
gain. The proposed FL, using an adaptive fuzzy set, improve the dynamic response of the overall
system by improving the damping coefficient and decreasing the rise time and settling time compared
with other two controllers.

Keywords: adapted and static fuzzy sets, fuzzy logic controller.

1. Introduction

The problem of tracking a given trajectory is common in many industrial drives
plant. In motor drive applications, this may require that the motor follow its prede-
termined position or speed trajectory during starting, speed reference change and
braking. Also, the reference tracking should take place without causing excessive
stresses to the entire system hardware nor excessive inrush current into the electrical
motor driver. Therefore in order to achieve this requirement, the control strategy
must be adaptive, robust, accurate, and simple to implement Attia et al. (2001).

The mathematical equations of the astronomical telescope driven by electrical
motor are described through highly nonlinear-coupled differential equations (Attia,
1997). These equations contain a varying inertia term, a centrifugal and coriolis
term, and gravity term (Attia, 1997). Meanwhile, the gravity term tends to zero
for a well-balanced telescope. The system nonlinearity imposes difficulty to design
an accurate conventional controller to cover wide range of operating points in
nonlinear-coupled differential equations. Introducing compensator, based on state
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feedback linearization, is aimed at decoupling system, hence improving its dynamic
response (Attia, 2004).

Fuzzy logic controller has been applied successfully in several applications such
as control of astronomical telescope (Attia et al. 2001; Soliman et al. 1998) electrical
machines control F. Franklin et al. (1995), and fault diagnosis (Kazmierkowski and
Malesani, 1998).

Adaptive fuzzy controllers provide a mean of continuously adapting the fuzzy
rules to match desired performance criteria. Its typical application area is the control
of time varying and/or nonlinear plants. Fuzzy controllers may be either static or
dynamic. The static fuzzy rules are usually based on operator experience as fuzzy
logic can easily encode linguistic information (Attia, et al. 2001; Franklin, et al.
1995). This is the main advantage of fuzzy logic controller over neural networks.
In the adaptive case, the linguistic information captured from operator experience
can be used to initialize the fuzzy rules. This helps to reduce the training’s number
of iterations Nurnberger et al. (1999).

In this paper, two fuzzy controllers are proposed to control the electrical motor
driving astronomical telescope. The first one has static fuzzy rules which are based
on human experience. It is similar to the one proposed in previous work Attia
et al. (2001). However, as the operating conditions of the telescope changes, it is
expected that the controller parameters require fine tuning. The second controller
uses an adaptation scheme which dynamically varies the rules of the fuzzy set
to achieve a better dynamic performance. Both static and adaptive fuzzy logic
controllers performance are compared to that for the conventional PD controller.

2. Mathematical model of 14′′ Celestron telescope

The 14′′ Celestron telescope is a fork-mounted Schmidt Cassegrain (Celestron,
1992), as shown in Figure 1. It includes an optical tube assembly, an electric clock
drive with a worm gear drive and a giant 2′′ star diagonal. In addition, there is a
14′′ visual back, a 10 × 40 finder scope, setting circles, two counter weights bar
assemblies, a lens cap, carrying cases, and permanent magnet dc motor drives in the
Right Ascension (RA) and Declination (DEC) axis to move the telescope on both
sides. The dynamic equations of the telescope are a set of highly nonlinear-coupled
differential equations containing a varying inertia term, a centrifugal and coriolis
term, a frictional term, and a gravity term equal to zero. These equations are plugged
by substantial requirements for computation and the theory underlying their solution
is incomplete. The dynamic equations of the telescope are given by Eqs. (1) and (2).

M(θ )θ̈ + C(θ, θ̇ ) + G(θ ) = τ, (1)

M(θ )θ̈ + N (θ, θ̇ ) + τd = τ, (2)

where: θ , θ̇ , and θ̈ are the joint angular position, velocity and acceleration vectors
respectively. τd is a constant disturbance torque, which represents the unknown
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Figure 1. 14′′ Celestron telescope.

Figure 2. Simulink block diagram for the Celestron Telescope Model.

dynamics, e.g. friction. Also, each angular position contains the following variables:

θ = [ θ1 θ2 ]T, θ̇ = [ θ̇1 θ̇2 ]T, θ̈ = [ θ̈1 θ̈2 ]T, N (θ, θ̇ ) = C(θ, θ̇ ) + G(θ ).

where C is a vector of centrifugal and coriolis terms, G is a vector of gravity terms as
defined in Appendix. Figure 2 shows the Simulink block diagram for the Celestron
telescope model.
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For a coupled system like a telescope model, the input torques τ 1 and τ 2 control
the outputs θ1 and θ2. It is required to decouple this model by introducing a compen-
sator. Consequently a decoupled system can be considered as consisting of a set of
independent single-input single-output systems. The compensator with the model
of the telescope results into a linear system, which enables a linear controller such
as a PD controller to be used for control. The overall input for nonlinear model of
the telescope consists of a compensator plus two PD feedback controllers running
in parallel. The controller is consisting of a state feedback compensator and a linear
controller processes with state vector [θ1 θ̇1 θ̇2 θ1] (see ref. (Attia, 1997)).

3. Computed-torque controllers

The computed-torque control with an auxiliary control signal PD feedback is se-
lected for each actuator input, based on the local measurements of position er-
rors, and the joint velocity for each arm Lewis et al. (1993). In fact, there is no
tachometer to measure joint velocities. These velocities are estimated from angle
measurements, as shown in Figure 3. The output of the PD controller is described
by Equation (3) as shown in Figures (3) and (4) Slotine et al. (1991).

s = −kpeθ − kv ėθ (3)

The feedback linearizing transformation becomes as in Equation (4):

τ = M(θ )(θ̈d(t) − S) + N (θ, θ̇ ). (4)

So, the overall input to the nonlinear model becomes as in Equation (5):

τ = M(θ )(kpeθ + kv ėθ ) + N (θ, θ̇ ). (5)

Figure 3. Linear telescope model.
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Figure 4. PD computed-torque controllers for the telescope model.

where kp, kv are the proportional and the derivative gains of the PD controllers. eθ is
the difference between the desired position angle and the actual position angle, i.e.
eθ = θd – θ , of the telescope in a certain direction for Right ascension or declination
positions.

Then, the optimal gains of the PD controllers [kp1, kv1, kp2, and kv2]T , as shown
in Figure 4, are determined by the Ziegler-Nichols rule using nonlinear block-set in
MATLAB package. Also, these controller gains could be designed based on genetic
algorithms as in Attia et al. (2001, 2004).

Assuming the initial angles of the telescope are θ◦ = [0◦ 0◦]T , and the desired
step angles are θd = [45◦ 30◦]T . The transient positions are translated into degrees,
while all the control computations and gains are used in radians.

4. Static fuzzy logic controller (SFLC)

Conventional control based on modern scientific analysis determines the control ef-
fort in relation to a number of data inputs using a set of equations to express the con-
trol process. Expressing human experience in the form of a mathematical formula is
a very difficult task, perhaps an impossible one. Fuzzy logic has provided the simple
tool to interpret this experience to reality. According to Lee, a fuzzy logic controller
can be simply represented in four parts Lee et al. (1990) as shown in Figure 5:

• Fuzzification interface is responsible first for reading (measuring, and scaling)
the fuzzy control variables, which are the position deviation from the desired
value (eθ ), and its rate of change (ėθ ). Then interpreting the measured numeric
values, (eθ ) and (ėθ ) to corresponding linguistic variables with appropriate mem-
bership value as shown in Figure 5.

• Knowledge base representation that provides the definitions of the fuzzy mem-
bership functions defined for every fuzzy control variable; five triangular fuzzy
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Figure 5. The basic configuration of a fuzzy logic controller.

sets are selected in this paper, and the necessary fuzzy rules are constructed,
which specify the control goals using linguistic fuzzy terms.

• The inference system, the heart of the controller, provides approximate rea-
soning based on the knowledge base. It should be capable of simulating human
decision making and inferring the control actions based on fuzzy logic.

• The defuzzification interface translates fuzzy control action to nonfuzzy control
action, i.e. numerical values using a digital Center of Area (COA) as expressed
in the following equation (6).

COA =

N∑
i=1

μi ui

N∑
i=1

μi

. (6)

where μi is the centroid of the i th membership function, ui is a constant, which
determines the spread of the i th membership function, N is the number of linguistic
variables.

The first step in fuzzy controller design was the selection of input and output
variables. The designated input variables were (position error, eθ ) and (velocity of
the telescope link, ėθ ). Each variable is accompanied with a set of membership
functions as shown in Figures (6-a, 6-b), which represent the normalized triangular
membership functions as expressed in linguistic variables for RA, and it can be the
same for DEC Soliman et al. (1998); Attia et al. (2001). The linguistic variables
use the symbol P for positive, N for negative, S for small, M for medium and Z for
zero. The fuzzy set used for the output is shown in Figure 7. The generation of the
output fuzzy set using correlation minimum encoding is done being the method of
center of area as expressed in equation (6).

Table I shows the look-up of rules for input variables eθ1, and ėθ1. Figure 8 shows
rules surface viewer of RA SFLC controller for the inputs and output torque of RA
direction.
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Figure 6a,b. Solid line: Optimized MFs before learning. Dashed line: Normalized MFs after
learning.

During the actual operation, the computer would read in the Celestron position
data and compute position error and velocity. The fuzzy controller fuzzified the input
quantities through algorithms that operated on the input data as specified by the
membership functions. Next, the fuzzified input quantities passed through a series of
If and Then decision rules that formed the main body of the fuzzy controller assessed
the current state of the telescope and determined which control action was most
appropriate. Defuzzification was applied using the output variable and the control
action was selected. The widely used center of area strategy generates the center of
gravity of the possibility distribution of a control action. The control action is the
torques of the motor drive of both the two arms of the Celestron telescope RA and
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TABLE I

Look-up table of eθ1, and ėθ1

eθ1

ėθ1 NM NS Z PS PM

NM NM NM NM NS Z

NS NM NM NS Z PS

Z NM NS Z PS PM

PS NS Z PS PM PM

PM Z PS PM PM PM

-1500 -1000 -500 0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

Output fuzzy sets

D
eg

re
e 

of
 m

em
be

rs
hi

p

NM NS Z P S P M

Figure 7. Normalized output membership functions for Torque in RA.

DEC directions. The implementation and simulation results shown in Figures (10,
11) are generated using MATLAB compiler.

5. Adapted fuzzy logic controller

The adaptive fuzzy logic controller (AFLC), using adaptive fuzzy set, has the same
inputs and output as the static case SFLC. A full rule base (25 rules) is also defined.
The rules have the general form:

If eθ is NS and ėθ is Z then τ is NS.
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Figure 8. Rules Surface Viewer of RA SFLC Controller.

Where the membership functions (m fi ) is defined as follows:
mfj ∈ {NM, NS, Z , PS and PM} as in the static fuzzy case. However, the output

space has 5 different fuzzy sets. To accommodate for the change in operating
conditions, the adaptation algorithm changes the parameters of the input fuzzy sets.

The algorithm presented in this section is designated to optimize a rule base of
the fuzzy controller by shifting and/or modifying the support of the input fuzzy
sets. They do not modify the rules or the structure of the fuzzy controller. In the
following, we assume that the fuzzy sets μ

(i)
j representing the linguistic triangular

membership functions of the input variables respectively are defined as follows:

μ
(i)
j (x ; a, b, c)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a

x − a(i)
j

b(i)
j − a(i)

j

a ≤ x ≤ b

c(i)
j − x

c(i)
j − b(i)

j

b ≤ x ≤ c

0 c ≤ x

Where a(i)
j , b(i)

j , c(i)
j ∈ �,a(i)

j ≤ b(i)
j ≤ c(i)

j Nurnberger et al. (1999), a, b, and c are
constants and � is the real integer number set. This means that μ

(i)
j (a(i)

j ) = 0,

μ
(i)
j (b(i)

j ) = 1, and μ
(i)
j (c(i)

j ) = 0. Figure 9 shows the triangular membership
functions will be used as symmetric fuzzy sets in the consequents and antecedents.

The updated parameters of the membership functions (MFs) of the fuzzy sets
for the input variables using the on-line back-propagation (BP) algorithm could be
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Figure 9. Triangular membership function (MF).

expressed in a simple form as follows:

φ {k + 1} = φ {k} + α × �φ {k} ,

where α represents the learning rate, and φ represents the parameters a(i)
j , b(i)

j , c(i)
j

∈ �, a(i)
j ≤ b(i)

j ≤ c(i)
j of the membership function of the fuzzy sets for the input

variables. �φ {k} is the change of these parameters based on the performance of
the system under study. While the parameters of the membership functions of the
output fuzzy sets for the output torque are fixed Nurnberger et al. (1999). Figure 6
shows the normalized MFs of the input fuzzy sets before and after learning.

6. Simulation results

The nonlinear differential equations, described the system under study, is solved
using the Runge-Kutta fifth order method using MATLAB Simulink package. The
integration step value is automatically varied in this package. The tolerance was set
at 0.001, the minimum and maximum step size was adjusted automatically. The sam-
pling time was 0.01 seconds. Several tests are carried out to validate the efficiency
of the proposed control schemes. The PD controller gains of the RA and the DEC
direction arms are selected to be Kp1 = 220, Kv1 = 90, Kp2 = 200 and Kv2 = 85, re-
spectively. These PD controller gains, values of K p1, K p2, Kv1,andKv2, are tested
in reference (Attia, 2004). The tuning strategy goal for the AFLC is to achieve a
fast dynamic response with no overshoot, and negligible steady state error. The
complexity of the FL controller is reduced due to reducing the number of rules and
adapting the membership functions parameters. Figures (6-a) and (6-b) show the
normalized MFs before and after training using BP technique for the input variables
of the fuzzy controller. The dynamic responses of the position using a PD, SFLC
and AFLC controllers for RA, and DEC movement arms are shown in Figure (10)
and Figure (11) respectively. The dynamic response when using AFLC is superior
in comparison with the other two controller regarding the rising time, settling time
and damping coefficient of the overall system. These dynamic responses are carried
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Figure 10. RA position response based on PDC, SFLC and AFLC Controllers.
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Figure 11. DEC position response based on PDC, SFLC and AFLC Controllers.

out when the desired values of the telescope positions for RA and DEC arms are
set such that θd = [

45◦ 30◦ ]T
.

The variations of the velocity for RA and DEC arms are shown in Figures (12)
and (13). The velocity values become zero when the system reaches to the
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Figure 12. RA Velocity response based on PDC, SFLC and AFLC Controllers.
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Figure 13. DEC Velocity response based on PDC, SFLC and AFLC Controllers.

desired position reference for RA and DEC, respectively. Also, the proposed AFLC
controller gives a better dynamic response compared with other controller.

Therefore, the application of AFLC controller improves the dynamic response
of the overall system of the astronomical telescope. It is clear that the adaptive
fuzzy controlled system shows the fastest rise time and settling time with the best
damping coefficient factor.
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7. Conclusion

This paper presents an application of a fuzzy logic controller based on an adaptive
fuzzy set to control the electric motor for position movements of the telescope. The
input vectors of the adaptive tuned fuzzy logic controller are the position deviation
and its rate of change. A classical fuzzy logic controller, using a static fuzzy set and
rule base, has been simulated and tested. Also, the proposed FL, driven by an adap-
tive tuned fuzzy set, is compared with the conventional PD controller. Simulation
dynamic results show the superiority of the adaptive fuzzy controller compared with
other controllers used. The settling time and the rise time are decreased when using
the adaptive fuzzy controller. Also, the AFLC improves the damping coefficient of
the overall system under study. The simulation results show the effectiveness of the
proposed FL with adaptive fuzzy set scheme as a promising technique.

Appendix. Mathematical model of the telescope

The terms of the nonlinear differential equation are defined as follows:

• Inertia Matrix

The inertia matrix is defined by:

M (θ ) =
[

m11 (θ ) m12 (θ )
m21 (θ ) m22 (θ )

]
, (A.1)

Where,

m11 (θ ) = Iy1 + Ix2 S2
2 + Iy2C2

2 ,

m12 (θ ) = −C1C2S2
(
Ix2 (S2 + C1) + Iy2 (C2 − S1)

)
,

m21 (θ ) = −C1C2S2
(
Ix2 (S2 + C1) + Iy2 (C2 − S1)

)
,

m22 (θ ) = Ix2

(
C2

1C2
2 S2

2 − 2S1C2
1C2

2 S2 + S2
1C2

1C2
2

)
,

+ Iy2

(
C2

1C2
2 S2

2 − 2S1C2
1 S2

2C2 + C2
1 S2

1 S2
2

)
+ Iz2

(
S2

1 S2
2 + 2S1C2

1 S2 + C4
1

)
.

• Coriolis and Centrifugal Torque Vector

The coriolis and centrifugal torque vector C
(
θ, θ̇

)
mentioned in equation (1) is

given in the general form as follows:

C
(
θ, θ̇

) =
[

b1
11 (θ ) θ̇2

1 + 2b1
12 (θ ) θ̇1θ̇2 + b1

22 (θ ) θ̇2
2

b2
11 (θ ) θ̇2

1 + 2b2
12 (θ ) θ̇1θ̇2 + b2

22 (θ ) θ̇2
2

]
, (A.2)
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Where,

b1
11 = 0,

b1
12 = C2S2

(
Ix2 (S1S2 + S1C1) + Iy2 (S1C2 − S1S1) + (

Ix2C1S1 + Iy2C1C1
))

,

b1
22 = 2Ix2 S2C2 − 2Iy2C2S2

+ 1

2
Ix2

(
2C1C2

2 S2
2 S1 + 2C3

1C2
2 S2 − 4S2

1C1C2
2 S2 − 2S1C3

1C2
2 + 2S3

1C1C2
2

)
+ 1

2
Iy2

(
2C1C2

2 S2
2 S1 + 2C3

1 S2
2C2 − 4S2

1C1S2
2C2 + 2C1S3

1 S2
2 − 2C3

1 S1S2
2

)
− 1

2
Iz2

(
2S1S2

2C1 + 2C3
1 S2 − 4S2

1C1S2 − 4C3
1 S1

)
b2

11 = C2S2
(
Ix2 (S1S2 + S1C1) + Iy2 (S1C2 − S1S1) + ((

Ix2 S1C1 + Iy2C2
1

)
− (

Iy2 − Ix2

)))
b2

12 = Ix2

(−2C1C2
2 S2

2 S1 − 2C3
1C2

2 S2 + 4S2
1C1C2

2 S2 + 2S1C3
1C2

2 − 2S3
1C1C2

2

)
+ Iy2

(−2C1C2
2 S2

2 S1 − 2C3
1 S2

2C2 + 4S2
1C1S2

2C2 − 2C1S3
1 S2

2 + 2C3
1 S1S2

2

)
+ Iz2

(
2S1S2

2C1 + 2C3
1 S2 − 4S2

1C1S2 − 4C3
1 S1

)
− 1

2
C1S2

2

(
I2 (S2 + C1) + Iy2 (C2 − S1)

) + 1

2
C1C2

2

(
Ix2 (S2 + C1) + Iy2

(C2 − S1)) + 1

2
C1C2S2

(
Ix2C2 − Iy2 S2

)
b2

22 = 1

2
Ix2

(−2C2
1C2S3

2 + 2C2
1C3

2 S2 + 4S1C2
1 S2

2C2 − 2S1C2
1C3

2 − 2S2
1C2

1C2S2
)

+ 1

2
Iy2

(−2C2
1C2S3

2 + 2C2
1C3

2 S2 − 4S1C2
1C2

2 S2 + 2S1C2
1 S3

2 + 2S2
1C2

1C2S2
)

+ 1

2
Iz2

(
2S2

1 S2C2 + 2S1C2
1C2

)

• Gravity and loading vector

The third term in equation (1) is defined as the gravity and loading vector G (θ ).
The general expression for G (θ ) is given by the following equation:

G (θ ) =
[

G11 (θ )
G21 (θ )

]
. (A.3)

The gravity terms G11 and G21 tend to zero for a well-balanced telescope. The
details of the mathematical model derivation are given in (Attia, 1997).
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Notations

[θ1, θ2]T Angular positions for Right Ascension and Declination angles.
[RA, DEC]T Right Ascension and Declination angular positions.
C1, C2 cos (θ1) , cos (θ2)
S1, S2 sin (θ1) , sin (θ2)
Ix , Iy, Iz The moment of inertia and subscripts of x, y, and z denote the

axis about which moment of inertia is considered, respectively.
M (θ ) 2-dimensional matrix of inertia terms.
C

(
θ, θ̇

)
Vector of centrifugal and coriolis terms.

G (θ ) Vector of gravity terms.
τ Vector of joint torques [τ1, τ2]T .
Kp1 Proportional gain of PD controller for RA position.
Kv1 Derivative gain of PD controller for RA position.
Kp2 Proportional gain of PD controller for DEC position.
Kv2 Derivative gain of PD controller for DEC position.
θ1in , and θ1sp Initial and final position angles of RA position.
θ2in , and θ2sp Initial and final position angles of DEC position.
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