
A Genetic-Based Neuro-Fuzzy Approach for Prediction of       
Solar Activity  

Abdel-Fattah Attia*, Rabab H. Abdel-Hamid, and Maha Quassim  

National Research Institute of Astronomy and Geophysics (NRIAG), 11421 Helwan, Cairo, Egypt 

ABSTRACT 

This paper presents an application of the neuro-fuzzy modeling to analyze the time series of solar activity, as measured 
through the relative Wolf number. The neuro-fuzzy structure will be optimized based on the linear adapted genetic 
algorithm with controlling population size (LAGA-POP). First, the dimension of the time series characteristic attractor is 
obtained based on the smallest Regularity Criterion (RC) and the neuro-fuzzy modeling. Second, after describing the 
neuro-fuzzy structure and optimizing its parameters based on LAGA-POP, the performance of the present approach in 
forecasting yearly sunspot numbers is favorably compared to that of other published methods. Finally, the comparison 
predictions for the remaining part of the 22nd and the whole 23rd cycle of solar activity are presented.  
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1. INTRODUCTION 

Studying the features of the solar activity cycle is vital and of prime importance not only for its effect on the 
Climatologically parameters but for the practical needs as telecommunications, power lines, geophysical exploration, 
long range planning of satellite orbital trajectories and space missions planned by space organisms. During past decades, 
a wide variety of methods have been proposed in order to predict the amplitude to the onset of the next cycle for a few 
years ahead. The 23rd Solar cycle was achieved a great attention of several solar physicists to treat the problem of 
prediction. Numerous numerical techniques have been arduously developed to predict the amplitude and the phases of 
activity of solar cycles, before the sunspot cycle minimum. Among these suggested method: The method which depends 
on the even/odd behavior method11, 14, 27, 16, mixed methods applied26, 6, 7, and 15 and the Spectral technique3. The more 
reliable indicator to the activity is the precursor technique; especially the geomagnetic precursor which based on the 
records of geomagnetic storms12, 19, and 10 published a summary of the scientific panel recruited by Space Environment 
Center (SCE) with support of NASA to assess prediction of cycle 23rd.  A new suggested idea is depending on 
measurements of the spotless days. Recently a promising method depend on the time series analysis such as Neural 
Networks, Fuzzy neural networks and genetic algorithms have been applied by researchers such as15. Historical records 
of monthly means of sunspot numbers published in the NGDS ( ftp://ftp.ngdc.noaa.gov/STP/ ) were used. Data are 
covering the period 1810-2003. 

 Fuzzy logic, neural networks and genetic algorithms are three popular artificial intelligence techniques that are widely 
used in many applications. Due to their distinct properties and advantages, they are currently being investigated and 
integrated to form new models used for predictions. Fuzzy systems are currently used in a number of industrial and 
scientific applications. Therefore, it is advantageous to have algorithms, which build and optimize systems automatically 
from data. The major powerful aspect of fuzzy systems is easy applicability of expert knowledge to the subject domain. 
However, in most cases this empirical information is not sufficiently accurate to build an optimal system. So, the Linear 
Adapted Genetic Algorithm with controlling POPulation size LAGA-POP1 approach for optimizing the structure and 
automatic learning of internal parameters of a fuzzy system.  
 
Different nonlinear methods were done to predict the maximum amplitude of solar 22nd, and 23rd cycles. Calvo29 uses 
artificial neural networks (ANN) for prediction of solar activity. The sunspots data series, which is data counting dark 
patches on the sun and is related to the solar storms, shows an eleven-year cycle of solar maximum activity, and if 
accurately modeled, can forecast the severity of future activity.  While solar activity is unavoidable, its impact can be 
                                                        
* Further author information: (Send correspondence to Abdel-Fattah Attia) 
E-mail: afattia@nriag.sci.eg, Fax: +2 02 5548020 

Modeling and Systems Engineering for Astronomy, edited by Simon C. Craig,
Martin J. Cullum, Proc. of SPIE Vol. 5497 (SPIE, Bellingham, WA, 2004)

0277-786X/04/$15 doi: 10.1117/12.553201

542

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 02/15/2015 Terms of Use: http://spiedl.org/terms



lessened with appropriate forecasting and proactive action. In this work we use fuzzy model to forecast the solar activity, 
as measured by the relative wolf number. First, in section 1 we give an introduction about state of the art for prediction 
of the solar activity. Section 2 shows the structure of the fuzzy neural network. The embedding dimension of the solar 
dynamics attractor is introduced in section 3. Optimizing the neuro-fuzzy model based on LAGA-POP is discussed in 
section 4. The simulation results and conclusions are discussed in section 5, and section 6, respectively. 

2. FUZZY NEURAL NETWORK (FNN) 

The basic structure of a fuzzy neural network (FNN), introduced by18 is shown in Fig. 1. This structure has been used by 
many authors such as8, 23 and modified by13, 2. The original structure was optimized using a gradient search technique by 
Lin & Lee. In the following subsection we will describe this structure, showing the modification. Farag23 optimized the 
structure parameters using a multiresolutional dynamic genetic algorithm (MRD-GA), which used floating 
representation for parameter coding. The following notation is used to describe the function of the nodes in each of the 
five layers. 
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The neuro-fuzzy model is consists of five layers, as follows: 

Layer (1): Each node of this layer transmits the input values ( )1 2, , , mx x x�  to the next layer.  
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Layer (2): This layer is known as fuzzy layer, because each node has a fuzzy set. For a bell-shaped membership function, 
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where the parameters c and σ are the center and width of the bell-shaped function.  
 
Layer (3): Rule layer 
A T-norm operation is used to specify the precondition matching of the fuzzy rules. The output of the rule in this layer is 
determined by an AND-operation. 
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Layer (4): Rule weight layer 
This node performs a fuzzy OR–operation to integrate the fired rules, which have the same consequent modified by rule 
weights. The output of this layer is represented by:  
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The rule weight has w values either one or zero. 
Layer (5): This layer computes the output of a fuzzy model based on the defuzzification method. The most widely used 
method is center of area defuzzification. 
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where the jth link weight in this layer is 4 4
j jc σ . 
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Figure 1  Basic structure of neuro-fuzzy topology [from Farag23]. 

 
The FNN works in the following manner8,13. In the forward regime the input values (crisp values, fuzzy sets) are first 
compared with all premises of the rules (input reference fuzzy sets). The outputs of the AND-neuron are then combined 
with rule-weight (preference between rules) to obtain the degree of rule activation. In the last layer these degrees are 
aggregated with the corresponding consequents of the rules (output reference fuzzy sets) according to the inference 
algorithm. The output of the FNN can be a fuzzy set or a crisp value (after defuzzification). 

3. THE EMBEDDING DIMENSION OF THE SOLAR DYNAMICS ATTRACTOR 

The problem of fuzzy system input selection is dealt with by methods proposed by30,9. First, we divide the data into two 
groups: A and B. We use the smallest regularity criterion, RC, for decisions when selecting inputs rather than the root 
mean square error (RMSE) used in the Jang method9. The regularity criterion (RC) is defined as follows: 
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Where AB
iy  is the model output for the group A input estimated by the model identified using the group B data, BA

iy  is 

the model output for the group B input estimated by the model identified using the group A data, A
iy  and B

iy are the 

output data of groups A and B, and Ak  and Bk  are the amount of data in groups A and B. 
 
In this section, the minimum numbers of variables required for reconstructing the solar dynamics are determined by 
selecting inputs for fuzzy model based on the smallest Regularity Criterion (RC). Applying the Sugeno method will 

reduce the complexity of the model30. For the candidates ( ) ( ) ( )1 , 2 ...,  x t x t x t n− − − as inputs to the system, which 
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has one output, and the task is to select the appropriate inputs. Figure 2 shows the flow chart implementation of this 
approach as implemented in MATLAB.  The following three steps provide an outline of the approach: 
Step 1: There are n SISO fuzzy models (FM1, FM2,… and FMn); each model has one input and one output. Find 
Regularity Criterion (RC) of each fuzzy model.  Fix the model that has smallest RC, as shown in Fig. 1, assuming that 

FM1 has the smallest
1FMRC . Save the index of input ( )1x t −  which leads to the smallest 

1FMRC  of FM1. 

Step 2: Add the second input from the set of candidates to ( )1x t − . This means that in this step there are three fuzzy 

models (FM12, FM1(n-1), and FM1n), each model has two inputs and one of them is ( )1x t − . Then find RC for each 

model, and repeat step 1. The model that has the smallest RC gives us the set of inputs forwarded to the third step. In the 

example, model FM12 has the smallest 
12FMRC as shown in Figure 2 

Step 3: Now, two models with three inputs are considered. These inputs are ( ) ( ) ( )( )1 , 9 and 1x t x t x t n− − − − for 

FM12(n-1), and ( ) ( ) ( )1 , 9 and x t x t x t n− − − for FM12n. Again, evaluate the smallest RC for FM12 (n-1), and FM12n. The 

model that has the smallest RC is selected, and the indices of the inputs are recommended. The last step is to compare all 
the smallest RC obtained in all steps, and choose the smallest RC from all steps, which will lead to the index of the 
appropriate and required inputs. In this example, these are ( ) ( )1 ,and 9  x t x t− − , because their fuzzy model has the 

smallest RC, shown as in Figure 2.  
 

We will assume that the solar dynamics is given by ( ) ( )( )x t F x t= −1 , with F some unknown function. Calvo29 

suggested 12 unites in his neural networks as an input variables and single unit it the output one. To reduce the 
complexity structure of the fuzzy model by reducing the input variables to be only two variables based on fuzzy model 
and smallest regularity criterion using Sugeno and Yasukawa approach.  Figure 3 shows a selection of two inputs from a 
set of twelve inputs using the Sugeno & Yasukawa approach30 based on the LAGA-POP procedure for FNN model.  The 
membership functions for the selected inputs x(t-1) and x(t-9) are three Gaussian fuzzy sets for each input variable.  The 
training data set is the first half of the data represent the whole record (1700-1980) which represent (250 sample points), 
and the testing data set is the rest of the period (1980 – 2003), as shown in Figure 4. 
 

4. OPTIMIZING THE FNN MODEL USING LAGA-POP 

The main aspects of the LAGA-POP for optimizing the fuzzy model structure are discussed below. We will optimize 
structure parameters of the fuzzy model; such as fuzzy sets parameters, rule weights, and centroids of rule consequent.  
First, we have to define genetic algorithm parameters: 

•  Population size at the beginning of optimization = 750, 
•  Maximum number of generations = 150, 
•  Pc, and Pm follow the LAGA-POP approach. 
•  The number of bits for each parameter depends on the upper and lower values of the parameters considering the 

same bit resolution for all, and equals 104. 
•  Termination stop, η = 10-4, or reach the maximum number of generations allowed. 

 
The optimization includes all parameters of the fuzzy rule structure, such as parameters of input reference fuzzy sets, 
rule weights, and output singletons. The block diagram for the LAGA-POP optimization process is shown in Figure 4. 
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Figure 2  Flow chart implementation for the Sugeno and Yasukawa approach. 
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Figure 3  Input selection of the fuzzy model based on the smallest regularity criterion. 
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•  Fuzzy model representation  
This section discusses how the fuzzy model is formulated using the LAGA-POP approach, where all the parameters of 
the fuzzy model are represented in a chromosome. The chromosome representation determines the GA structure. With 
the population size (pop_size), we encode the parameters of each fuzzy model in a chromosome, as a sequence of 
elements describing the input fuzzy sets in the rule antecedents followed by the parameters of weights and the rule 
consequents. Where the intervals of acceptable values for each fuzzy set shape forming parameter (∆c = [cmin, cmax], and 
∆σ = [σmin, σmax] for Gaussian) are determined based on 2nd order fuzzy sets for all fuzzy sets, as explained in chapter 4. 
Gaussian shape is chosen in order to show, how the parameters of fuzzy sets are formulated and coded in the 
chromosomes. The acceptable constraints for rule weights are between [0, 1], and for centroids they are the minimum 
and maximum values of the output. 

•  Coding of fuzzy model parameters 

For the MISO system, two inputs ( ) ( )1 ,  9x t x t− −  and one output ( ) x t . After selecting appropriate inputs, each of the 

input fuzzy variables is classified into ( )11,... nA A , ( )1 2
,... nA A , …, and ( )1,...

mnA A  reference fuzzy sets, respectively, 

where n1, n2, … nm are number of fuzzy sets for inputs ( )1 2,  ,...,  mx x x , respectively. Each reference fuzzy set is 

described by Gaussian membership function1. The Gaussian membership function is specified by two parameters: center 

c and spread σ, resulting in (2
1

m

i
i

n
=
∑ ) parameters in the corresponding layer. Using the Wang-Mendel technique24 for 

generating rules from given data25, the fuzzy model has k rules, which represent 
1

m

i
i

n
=

∏ theoretically possible rules. These 

rules represent the optimal generated rules due to the improvements to the Sugeno, and Jang approaches in the previous 

section. This means we have k rule weights w, and k centroids represented by singletons b. Thus a total of (2
1

m

i
i

n
=
∑ +2k) 

parameters (2
1

m

i
i

n
=
∑ + kweights + kcentroids) need to be optimized using LAGA-POP. The coded parameters of the fuzzy 

model are arranged as shown in Table 1 to form the chromosome of the population. 

Table 1: Coded parameters of the fuzzy model. 

Sub-chromosome of inputs 
Sub-chromosome 
 of rule weights 

Sub-chromosome of 
rule consequents Chromosome 

( )x t −1  ( )x t −9  w1, ……, wk b1,… … …, bk 
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2(
1 1

mm

i i
i i

n n
= =

+∑ ∏ ) 
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2×n1 
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k =
1

m

i
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n
=

∏  

b1,… … …, bk 

k =
1

m

i
i

n
=

∏  

•  Selection function 
The selection strategy decides how to select individuals to be parents for new ‘Children’. The selection usually applies 
some selection pressure by favoring individuals with better fitness. After procreation, the suitable population consists for 
example of L chromosomes, which are all initially randomized. Each chromosome has been evaluated and associated 
with fitness, the current population undergoes the reproduction process to create the next population, and the “roulette 
wheel” selection scheme is used to determine the member of the new population. The chance on the roulette-wheel is 

adaptive, and is given as Pl /∑Pl, where { }1
,   1, ...,l

l

P l L
J

= ∈ , and Jl is the performance of the fuzzy model encoded in 

chromosome measured in terms of the normalized Mean Square Error (MSE), or J.  
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J x t x t
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where N is the number of point samples, ( )x t  is the true output and ( )tx
∧

is the model output.  

•  Crossover and mutation operators 
The mating pool is formed, and crossover is applied and followed by a mutation operation following the LAGA 
approach. Finally, after these three operations, the overall fitness of the population is improved. The procedure is 
repeated until the termination condition is reached. The termination condition is the maximum allowable number of 
generations, or a certain value of (MSE) required to be reached.  

•  Termination condition 
The procedure is repeated until the termination condition is reached. The termination condition is the maximum 
allowable number of generations, or a certain value of (MSE) required to be reached. Or a relative precision error of 

( ) ( )( ) ( )* * *1f g f g f g η− − <  is reached, where f* is the maximum fitness value, and η is the allowed error. 

 

 

Figure 4  Block diagram for the LAGA-POP optimization process 

5. SIMULATION RESULTS  

After describing the neuro-fuzzy model and selecting its input variables based on the smallest regularity criterion and 
FNN model using Sugeno and Yasukawa approach, then optimizing the neuro-fuzzy model parameters using LAGAPOP 
approach. We will present here the results obtained using this method to predict the annual mean sunspot number. The 
generated fuzzy rules follow the Wang-Mendel technique, with the maximum number of rules equal to 8. The 
chromosome length of the model parameters is 592 bits. 
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After finishing the optimization process with 150 generations, the (RMSE) decreases to reach 0.456, as shown in Fig. 5.  

The population size is reduced from 750 at the beginning of the optimization to 218 at the end of the process, due to the 

LAGA-POP approach. Figure 5 shows the decreases in the population size with the generations of the whole 

optimization process. Figure 5 shows the effectiveness of LAGA-POP for optimizing the model parameters and reducing 

the computation time, together with better performance.  
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Figure 5 The effectiveness of reducing the population size, together with better performance due to LAGA-POP 

approach.  

 

After validating the neuro-fuzzy model capabilities, in the rest of this section, we present our predictions for the rest of 

the 22nd cycle and the complete of 23rd cycle. Figure 6 shows the prediction of the optimized neuro-fuzzy model will be 

determined as in Figure 6. Figure 6 shows that the fuzzy model has a good match with the observed data after optimizing 

the parameters using LAGA-POP with RMSE = 0.456. Fig. 7 shows the prediction error between the observed and 

outputs of our model for the whole data. The maximum amplitude of the sunspot number of 23rd cycle is predicted 132 

as shown in Figure 6. 
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Figure 6  Comparison of between observed sunspots numbers (solid line) and the predictions using FNN model (dashed 
line)  
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Figure 7 Prediction error between observed sunspot numbers and FNN model. 

 
Figure 8 depicts the Gaussian type membership functions for each input variable before and after training, using LAGA-

POP for two inputs problem with bit resolution of 104.   

Table 2: Sample of the early predicted values of the maximum sunspot number of cycles 22 and 23 as a result of 
different numerical methods. 

Reference Max. sunspot no. 
Cycle no. 

Kane,1989 

Thompson,1993 

Our model 

165±35 

148.3 

150 

22 
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Kopecky, 1991 
Wilson, 1992 

Letfus, 1993 

Schattenetal,1996 
Thompson,1996 

Bounar,1997 

Joselyn et.al.,1997 

Khaled et.al.,1997 

Li, 1997 

Rajmal,1997 

Wilson et.al., 1998a 

Wilson et.al., 1998b 

Hanslmeier,  1999 

Hathaway et.al,  1999 

Kane,1999 

Lantos,2000 

Our model 

208 

198.8± 26.5 

181 

138±30 

>=164.9 

158 

160±30 

156 

149.3±19.9 

158±18 

168±15 

144±29 

160 

154±21 

140±9 

133&122 

110-122 
 

132 

23 
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Figure 8  Membership functions in sunspot number prediction. Solid line: Normalized MFs before learning. Dashed 
line: Optimized MFs after learning. 
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6. CONCLUSIONS 

We have used the neuro-fuzzy model to study the solar dynamics, as measured by the annual mean value of the Wolf 
number. First, we determined the embedding dimension of the time series attractor based on the smallest regularity 
criterion and FNN model. The complexity of the neuro-fuzzy model reduced due to reducing the input variables of the 
model. Optimization of the parameters of the neuro-fuzzy model was based on the LAGA-POP approach, which 
enhances the performance of the model and shortens the computation time of the learning process. The performance of 
the present approach in forecasting yearly sunspot numbers is favorably compared to that of other published methods. 
Finally, the comparison predictions for the remaining part of the 22nd and the whole 23rd cycle of are presented as in 
Table 2. From this study we conclude that the neuro-fuzzy model is a reliable tool for time series analysis. In particular 
the fuzzy model seems to be able to capture the intrinsic dynamics of solar activity.  
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