Two-Dimensional Free Energy Surfaces for Electron Transfer Reactions in Solution

Abstract

Change in intermolecular distance between electron donor (D) and acceptor (A) can induce intermolecular electron transfer (ET) even in nonpolar solvent, where solvent orientational polarization is absent. This was shown by making simple calculations of the energies of the initial and final states of ET. In the case of polar solvent, the free energies are functions of both D-A distance and solvent orientational polarization. On the basis of 2-dimensional free energy surfaces, the relation of Marcus ET and exciplex formation is discussed. The transient effect in fluorescence quenching was measured for several D-A pairs in a nonpolar solvent. The results were analyzed by assuming a distance dependence of the ET rate that is consistent with the above model. Copyright © 2008 Shigeo Murata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

 

Back