Kafr Elshiekh University
Faculty of Engineering
Department of
Physical and Mathematical Engineering

24- 06- 2021 3 hours 60 Marks

Engineering physics (2)(PHM1107)

Final exam: 3 pages

Answer the following questions:

Question(1): (ILOs: A1)

First Year

(30Marks)

1.		adiation has a peak nea	r the vi	sible range (0.4-0.2	7um) a	4000 K 2000 K 2000 K 2000 K Wavelength(sura)	4		
_	(A)	10001/	(B)	2000K	[(C)	3000K	(D)	4000K	
2.	Find the peak wavelength of the black body radiation which has a temperature 5800k								
Z.		0.99um	(B)	0.299um	(C)	0.499um	(D)_	9.9um	
3.	Solar cells is one of the practical uses of the?								
٠,٠	(A)	Compton effect	(B)	Photoelectric	(C)	Work function	(D)	Wave function	
i	1 `	•		effect	l		<u> </u>		
4.	Light	of λ=500nm is incider	nt on so	dium with Φ=2.28	ev. wh	at is the maximum k	inetic e	energy of ejected	
"	Light of λ =500nm is incident on sodium with Φ =2.28ev. what is the maximum kinetic energy of ejected photoelectrons? (hc=1240 ev.nm)								
	(A)	40ev	(B)	30ev	(C)	10ev	(D)	0.2 ev	
5.	In Compton effect the kinetic energy of the recoiling electron is: (A) $E_s = \sqrt{E_o^2 + P_e^2 C^2}$ (B) $E_s = \sqrt{P_s^2 C^2}$ (C) $E_s = \sqrt{E_o^2 + C^2}$ (D) $E_s = \sqrt{E_o^2 + P_e^2}$								
<u> </u>	(A)	$v = \sqrt{v^2 + v^2/2}$	(B)	$E = \sqrt{P^2C^2}$	(C)	$\mid E_{\bullet} = \sqrt{E_{e}^{2} + C^{2}}$	(D)	$E_{\rm g} = \sqrt{E_{\rm o}^2 + P_{\rm g}^2}$	
6.	The transport of prediction with a wavelength of $\lambda = 5.7 \times 10^{-12}$ m is incident on stationary electrons. Radiation							electrons. Radiation	
	that has a wavelength of $6.57*10^{-12}$ m is detected at a scattering angle of? $(\frac{h}{m_g s} = 2.34 * 10^{-3} n)$								
	<u> </u>			50°	(C)	70°	(D)	90°	
<u></u>	(A)	30° ee electron has a mome	(B)	55*10-24kg m/s T	he way	elenoth of its wave f		n is: (h=6.63*10	
<u> </u> 7.			ntum o	(3,10 Kg.111/3, 11	iic wav	Ciongar of the		•	
		kg/s)	(B)	1.3m	(C)	1.3*10 ⁻²⁰ m	(D)	23*10 ⁻¹⁰ m	
	(A)	1.3*10 ⁻¹⁰ m energy of a photon of			110/				
8.			(B)	3ev	(C)	1.75ev	(D)	0.9ev	
	(A)	5.75ev	OF a pa	rticle moving alons	x axis		t the p	article is in the	
9.	$\Psi(x)$ is the wave function for a particle moving along x axis. The probability that the particle is in the interval from x=a to x=b is given by:								
	(A)	$\frac{\int_{a}^{b} \Psi(x) dx}{\int_{a}^{b} \Psi(x) dx}$	(B)	$\int_a^b \Psi(x) ^2 dx$	(C)	Ψ(a) – Ψ(b)	(D)	$\Psi(a) * \Psi(b)$	
- 1				<u> </u>	1				

10.	If a wave function of ψ for a particle moving along x axis is normalized, then:									
	(A)	$\int_a^b \Psi(x) dx$	(B)	$\int \Psi^2 dx = 0$	(C)	$\int \Psi^2 dx = \infty$	(D)	$\int \Psi^2 dx = 1$		
11.	If $\int \Psi^2 dx = A^2 x - \frac{2A^2 x^3}{3L^2} + \frac{A^2 x^5}{5L^4}$ - (i) Determine the value of A that normalizes $\psi(x)$									
	(A)	$A = \left(\frac{5}{6L}\right)^2$	(B)	$A = \left(\frac{15}{16}\right)^2$	(C)	$A = \left(\frac{15}{16L}\right)^2$	(D)	$A = \left(\frac{16L}{15}\right)^2$		
12.	- (ii) Determine the probability that the particle is located between x=-L/3 and x=+L/3									
	(A)	5	(B)	1	(C)	0.57	(D)	0		
13.	E=hf =?									
	(A)	ωħ ²	(B)	ω/\hbar	(C)	\hbar/ω	(D)	ħω		
14.	An electron is incident on a square barrier what is the probability that the electron tunnels through the barrier if its width is 1nm? (constant C=16.18*10 ⁹)									
	(A)	0	(B)	3*10 ⁻³¹	(C)	5*10 ⁻⁹	(D)	8.8*10 ⁻¹⁵		
15.	An electron is confined between two impenetrable walls. The energy level for state n=1 is E ₁ =9.42ev. Determine E ₃									
	(A)	84.8ev	(B)	8ev	(C)	55ev	(D)	400ev		

Question(2): (ILOs: A2)

(15Marks)

(a) 1- An oscillator is subjected to a damping force that is proportional to its velocity. A sinusoidal force is applied to it. After a long time:

A. its amplitude is an increasing function of time

B. its amplitude is a decreasing function of time

C. its amplitude is constant

D. its amplitude is a decreasing function of time only if

the damping constant is large

2- Sinusoidal water waves are generated in a large ripple tank. The waves travel at 20 cm/s and their adjacent crests are 5cm apart. The time required for each new whole cycle to be generated is:

A. 100 s

B. 4 s

C.2s

D. 0.25 s

3-The tension in a string with a linear mass density of 0.0010 kg/m is 0.4 N. A sinusoidal wave with a wavelength of 20 cm on this string has a frequency of:

A. 0.0125 Hz

B. 0.25 Hz

C. 100Hz

D. 630Hz

4- If the speed of sound is 340m/s a plane flying at 200m/s creates a conical shock wave with an apex half angle of:

A. 58°

B. 32°

C. 40°

D.non of these

5- One of the different types of velocities in wave motion:

A. The particle velocity

B. The phase velocity

C. The group velocity

D. All of the above

6-The following function might be a solution to the wave equation with phase velocity c.

A. $f(x,t) = (ct - x)^2$

B. $f(x,t) = \sin(ct - x)$

C. Both A and B

D. None of these

- (b) Show that the wave velocity in string is $\sqrt{\frac{T}{\rho}}$ where T is the tension in the string and p is the mass per unit length.
- (c) Discuss the categories of sound waves.

Question(3): (ILOs: A1,A10)

(15 Marks)

(a) Start from the boundary conditions show that the reflection and transmission coefficient of a wave between two strings are

$$\frac{\text{Reflected Energy}}{\text{Incident Energy}} = \left(\frac{Z_1 + Z_2}{Z_1 + Z_2}\right)^2$$

and

$$\frac{\text{Transmitted Energy}}{\text{Incident Energy}} = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}$$

(b) Show that when sound waves are normally incident on a plane steel water interface 86% of the energy is reflected. If the waves are travelling in water and are normally incident on a plane water-ice interface show that 82.3% of the energy is transmitted.

(The impedance values in kg m⁻² s⁻¹ for water = $1.43 * 10^6$, ice = $3.49 * 10^6$ and steel = $3.9 * 10^7$)

- (c) A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of amplitude 0.1 m at one end of a very long string of linear density 0.01 kg/m. Find the rate of energy transfer along the string is and the wave velocity.
- (d) Show that the solution for forced harmonic oscillation is:

$$C_{\star} = \frac{-iF_0 e^{i(\omega t - \phi)}}{\omega Z_m}$$

where

$$Z_m = [r^2 + (\omega m - s/\omega)^2]^{1/2}$$

Assume any missing data

Best Wishes

Dr. Ahmed Saeed

Dr. Demyana Adel Abdel Masieh

confis