Kafrelsheikh University		Semester: 2nd Semester
Mechanical Engineering	,	Retaken l Evaluation
Dept. Mechanical Engineering		Date: May 23rd, 2021
Year: Preparatory Year		Time Due: May 27th, 2021
Instructor: Prof. Maher	Isheikh University	Result: Pass or Fail
Assoc. Prof. Fawzy Assist. Prof. Magda		
Subject: Engineering Mechanics (1)_Dynamics (MEP0001)		

- أعداد البحـث يكـون على نمـوذج البـحث المعد لـذلك هـن قبل ادارة الكـلية والموجـود على مـوقع أبحاث الكـلية.
- دتم اعداد البحـث بـرنـاهـج WORD ويكـون نوع الخـ Time New Roman هـقاس 14 والمسـافة بـين الخطوط 1.5

يتـم ارسـال البـحث بصـيغنة PDF عـلى ان يكـمـن اسـم الملف هو اســم الطـالـب ثلاثيـا هـتبوعـا

يخصـص لكـل مجـموعـة فصـول نموذج منفصـل يكتب الطالب فيه البـحـث اللطلوب وغ

 البـحث ويعتـبر الطـالب راسـب ا في المادة.

إذا ثبت اقتبـاس أو نقـل نسـبـة كـبـرة هـن البـحـث نصـا هـن طالب آخـر أو مـن كـــاب أو هـن أحـد

 تفـصـيالا بـين أقواس

يمكـن للطـالب الاسـتعـانة بالكـتاب اللقـرر كـأحـد اللصـادر ولكـن لا يكـون هو المـصـدر الوحـيد ويطبق علـى الكـتاب المقـرر نفـس الضـوابط السـابق ذكـرهـا مـن حـيث ألا تكـون نسـبـة الاقتـباس كـبـيرة ومـن حـيث ذكـر المصــدر عـنـد الاقتبـاس.
" غـير مســموح بنـقـل الأمثلـة المحـلولـة في كـــاب المادة لتـنفيـذ البـحـث المطلوب.

Report in Engineering Mechanics (1)-Dynamics

1. Derive an expression for the relative motion between two body's one move in straight line and the other moves around curved path?
2. How can you find the distance between two moving bodies as a function in time?
3. A vehicle travelling on a straight path has, at time $t_{0}=0$, a velocity v_{0} and acceleration a_{0}. It then experiences a linearly decreasing acceleration in time to a value of $a=0$ at t_{1}. Next, it travels a distance s_{2} in uniform motion and finally in a third phase of travel it is uniformly decelerated with an acceleration a_{3} until it stops. At what time and in what location does the vehicle come to a stop? Sketch the acceleration, velocity, and position-time diagrams.
4. A projectile is thrown from a tower with an initial velocity v_{0} at an angle α with respect to the horizontal. It lands at a distance L from the base of the tower.
a) What is the height H of the tower?
b) How long is the projectile in the air?
c) What is the speed of the projectile when it hits the ground?

5. Solve the following problems in this case?
a) A particle is moving on an ellipse having the equation
a. $\frac{x^{2}}{9}+\frac{y^{2}}{12}=1$
ii. The speed of the particle is constant and equal to $2 \mathrm{~m} / \mathrm{sec}$. At the instants when $x=1$, find out the magnitude and directions of its velocity and acceleration.
b) A projectile is projected at an angle of 30° from horizontal with a velocity of $30 \mathrm{~m} / \mathrm{sec}$. At what times, the projectile will be at half the maximum attainable height?
c) Let's suppose that the cliff is a height h and the water is a distance d from the bottom of a vertical cliff. How fast does one need to run off the cliff $v 0$ to clear the beach and make it into the water?

d) A projectile is fired from point B to hit point D . What is the possible angle of projection, so that the target is hit?

