$2^{\text {nd }}$ Semester
Faculty of Engineering
Final Examination تخلفات
Date: May 2021
Model Mechanics 2
Full Mark: 100

General rules:

Answer should be very clear and readable; you will get zero for any unreadable answer.

Question \#1 (20 Marks):

1. Determine by direct integration the x - and y coordinates of the centroid of the shaded area.

2. Using Pappus theorem, calculate the volume V of the solid generated by revolving the shaded area about x-axis. If this body were constructed of steel, what would be its mass m ? The density of steel is $\rho=7.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

Question \#2 (20 Marks):

a) Determine by direct integration the moment of inertia of the shaded area with respect to the x - and y-axes.

b) Determine the mass moment of inertia and the radius of gyration of the steel machine element shown with respect to (a) the x axis, (b) the y axis, (c) the z axis. (The density of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.).

Dr. Roshdy Abo-Shanab and Exam committee Mechanics 2 - Final Exam - Ma

Question \#3 (20 Marks):

The portable car hoist is operated by the hydraulic cylinder which controls the horizontal movement of end A of the link in the horizontal slot. Using the method of virtual work, determine the compression C in the piston rod of the cylinder to support the load P at a height h .

Question \#4 (20 Marks):

The hydraulic cylinder imparts motion to point B which causes link OA to rotate. For the instant shown where OA is vertical and AB is horizontal, the velocity of pin $\mathrm{B} v_{B}$ is $6 \mathrm{~m} / \mathrm{s}$ and is increasing at the rate of $24 \mathrm{~m} / \mathrm{s}^{2}$. For this position determine the angular velocity and angular acceleration of OA.

Question \# 4

Question \#5 (20 Marks):

The parallelogram linkage is used to transfer crates from platform A to platform B and is hydraulically operated. The oil pressure in the cylinder is programmed to provide a smooth transition of motion from $\theta=0$ to $\theta=\theta_{o}=\pi / 3 \mathrm{rad}$ given by $\theta=\frac{\pi}{6}\left(1-\cos \frac{\pi t}{2}\right)$ where t is in seconds. Determine the force at D on the pin (a) just after the start of the motion with θ and t essentially zero and (b) when $t=1 \mathrm{~s}$. The crate and platform have a combined mass of 200 kg with mass center at G . The mass of each link is small and may be neglected.

Question \# 5

