Kaferelsheikh University Faculty of Engineering **Department of Electrical Engineering**

Year: Fourth

Subject: Elective Course (5): Microwave Engineering

Date: 09/06/2021

Time allowed: 3 Hours Full Mark: 70 Marks Final Exam: 3 Pages

Academic Number: ECE 4231

Answer the following questions

Illustrate your answers with sketches when neccessary

[1] Question One: (15 Marks)

a) A two-port network is driven at both ports such that the port voltages and currents have the following values ($Z_0 = 50 \Omega$):

$$V_1 = 10 \angle 90^{\circ}$$

$$V_1 = 10 \angle 90^{\circ}$$
 ; $I_1 = 0.2 \angle 90^{\circ}$

$$V_2 = 8 \angle 0^{\circ}$$

$$V_2 = 8 \angle 0^\circ$$
 $I_2 = 0.16 \angle -90^\circ$

Determine the input impedance seen at each port, and find the incident and reflected voltages at (5 Marks) each port.

The input and output matching networks in a silicon BJT microwave amplifier are designed to produce $\Gamma_s = 0.5 \angle 120^\circ$ and $\Gamma_L = 0.4 \angle 90^\circ$. (i) Determine the power gain, the available power gain, the transducer power gain if the scattering parameters of the transistor are: $S_{11} = 0.6 \angle -160^{\circ}$, $S_{12} = 0.045 \angle 16^{\circ}$, $S_{21} = 2.5 \angle 30^{\circ}$, and $S_{22} = 0.5 \angle -90^{\circ}$. (ii) Calculate the power available from the source, P_{avs} , the average power delivered to the network, P_{in} , the power available from the network, P_{avn} , and the power delivered to the load, P_L , if $V_s = 10 \angle 0^\circ$, $Z_S = 50$ (10 Marks) Ω , and $Z_L = 50 \Omega$.

[2] Question Two: (15 Marks)

a) Use the μ-parameter test to determine which of the following devices are unconditionally stable and, of those, which has the greatest stability: (5 Marks)

Device	S_{11}	S_{12}	S_{21}	S_{22}
A	0.34∠-170°	0.06∠70°	4.3∠80°	0.45∠ – 25°
В	$0.75 \angle -60^{\circ}$	0.2∠70°	5.0∠90°	0.51∠60°
C	$0.65\angle -140^{\circ}$	0.04∠60°	2.4∠50°	0.70∠-65°

b) Using the scattering parameter data for the GaAs MESFET given in the following table, design an amplifier for maximum gain at 8.0 GHz. Design matching sections using open-circuited shunt (10 Marks) stubs, and compute the gain.

f(GHz)	S_{11}	S_{12}	S_{21}	S_{22}
4.0	0.72∠-103°	0.12∠28°	2.91∠86°	0.53∠-68°
8.0	0.52∠179°	$0.14 \angle -1^{\circ}$	2.0∠20°	$0.42\angle -129^{\circ}$
12.0	0.49∠103°	0.17∠-19°	1.5∠−38°	0.44∠170°

[3] Question Three: (20 Marks)

- a) Design a bandpass filter having a 0.5 dB equal-ripple response, with N=3. The center frequency is 1 GHz, the bandwidth is 10%, and the impedance is 50 Ω . (10 Marks)
- b) Design an amplifier to have a gain of 10 dB at 6.0 GHz, using a transistor with the following scattering parameters ($Z_0 = 50 \Omega$): (10 Marks)

Plot (and use) constant-gain circles for $G_S = 1$ dB and $G_L = 2$ dB. Use matching sections with open-circuited shunt stubs.

[4] Question Four: (20 Marks)

a) Design a high-pass lumped-element filter with a 3 dB equal-ripple response, a cutoff frequency of 3 GHz, and at least 30 dB insertion loss at 2.0 GHz. The characteristic impedance is 75 Ω .

(10 Marks)

b) A GaAs FET has the following scattering parameters and noise parameters at 6.0 GHz ($Z_0 = 50$ Ω): (10 Marks)

$$S_{11}$$
 S_{12} S_{21} S_{22} $0.6\angle -60^{\circ}$ 0 $0.7\angle -60^{\circ}$

 $F_{\rm min} = 2.0 \; {\rm dB}$, $\Gamma_{\rm opt} = 0.62 \angle 100^{\circ}$, and $R_N = 20 \; \Omega$. Design an amplifier to have a gain of 6 dB and the minimum noise figure possible with this gain. Use open-circuited shunt stubs in the matching sections.

Hints:

$$G = \frac{P_L}{P_{\text{in}}} = \frac{|S_{21}|^2 \left(1 - |\Gamma_L|^2\right)}{\left(1 - |\Gamma_{\text{in}}|^2\right) |1 - S_{22}\Gamma_L|^2} \qquad G_A = \frac{P_{\text{iten}}}{P_{\text{ave}}} = \frac{|S_{21}|^2 \left(1 - |\Gamma_N|^2\right)}{|1 - S_{11}\Gamma_S|^2 \left(1 - |\Gamma_L|^2\right)} \qquad \left|\Gamma_L - \frac{\left(S_{12} + \Delta S_{11}^*\right)^*}{|S_{22}|^2 - |\Delta|^2}\right| = \frac{|S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2}$$

$$\left|\Gamma_L - \frac{\left(S_{12} + \Delta S_{11}^*\right)^*}{|S_{22}|^2 - |\Delta|^2}\right| = \frac{|S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2}$$

$$\left|\Gamma_L - \frac{\left(S_{11} + \Delta S_{11}^*\right)^*}{|S_{22}|^2 - |\Delta|^2}\right| = \frac{|S_{12}S_{21}|}{|S_{22}|^2 - |\Delta|^2}$$

$$\left|\Gamma_S - \frac{|S_S|^2}{|S_{max}|}\right| = \frac{|S_S|^2}{|S_{max}|} = \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2} \left(1 - |S_{22}|^2\right)$$

$$\left|\Gamma_S - \frac{|S_S|^2}{|1 - |S_{11}|^2}\right| = \frac{\sqrt{1 - g_S} \left(1 - |S_{11}|^2\right)}{1 - \left(1 - g_S\right)|S_{11}|^2}$$

$$N = \frac{|\Gamma_S - \Gamma_{\text{opt}}|^2}{|1 - |S_S|^2} = \frac{F - F_{\text{min}}}{4R_N/Z_6} |1 + \Gamma_{\text{opt}}|^2$$

$$\left|\Gamma_S - \frac{\Gamma_{\text{opt}}}{N + 1}\right| = \frac{\sqrt{N\left(N + 1 - |\Gamma_{\text{opt}}|^2\right)}}{(N + 1)}$$