Kaferelsheikh University Faculty of Engineering Department of Electrical Engineering

Year: First

Subject: Electronic Circuits

Date: 14/06/2021

Time allowed: 1.5 Hours Full Mark: 45 Marks Final Exam: 1 Page

Academic Number: ECE 1001

Answer the following questions

[1] Question One: (25 Marks)

a) Prove that: $I_C = \beta I_B + I_{CEO}$.

(6 Marks)

b) Explain how the BJT transistor can be used as an inverter (switch).

(6 Marks)

c) For the emitter-bias network of Figure (1), determine: IB, IC, VCE, VC, VE, VB and VBC.

(7 Marks)

d) The emitter-bias configuration of Figure (2) has the following specifications: $I_{CQ} = 0.5I_{Cscat}$, $I_{Cscat} = 8$ mA, $V_{C} = 18$ V, and $\beta = 110$. Determine R_{C} , R_{E} , and R_{B} . (6 Marks)

[2] Question Two: (20 Marks)

- a) Explain the JFET universal transfer characteristic. Define the JFET forward transconductance. (5 Marks)
- b) The 2N5459 JFET has typically $I_{DSS} = 8$ mA and $V_{GS(off)} = -6$ V (maximum). Using these values, determine the drain current for $V_{GS} = 0$ V, -1, and -3 V. (5 Marks)
- c) Determine I_D and V_{GS} for the JFET with voltage-divider bias in Figure (3), given that for this particular JFET the parameter values are such that $V_D \cong 7V$. (5 Marks)
- d) For the circuit shown in Figure (4), find (1) r_{in} , (2) r_{in} (stage), (3) A_{ν} , (4) ν_{L} , (5) i_{L} , and (6) i_{L}/i_{S} (assume that $\alpha = 1$). (5 Marks)

Best Wishes

Or. Emad A. Elshazly

Kafrelsheikh University
Faculty of Engineering
Flootrical Engineering Days

Electrical Engineering Department

Year : First

Subject: Electric Circuits

Date: 14/06/2021

Time: allowed: 90 minutes Full Mark: 45 Marks

Name:

Academic Number:

Intended learning outcomes (ILOs): [a1, a4, a5, b1, b2, b3, b5, c8, c9, d1, d3] Question No.1 [10 Marks]

A- Calculate the current Is

B- Find the voltage Vab

Question No.2 [10 Marks]

Determine the voltage across the inductor for the network of the following Fig.

Question No.3 [10 Marks]

Find the Norton equivalent circuit for the network external to the 7- Ω capacitive reactance in the following Fig.

Question No.4 [15 Marks]

The system delivers a total power of 160 kW at 12,000 V to a balanced three-phase load with a lagging power factor of 0.86. Determine the magnitude of the line voltage E_{AB} of the generator.

