Kafrelsheikh University Faculty of Engineering Department of Electrical Engineering Subject: Optical Electronics

Time allowed: 3 Hours Full mark: 100 Marks Academic year: 2020-2021 Year: 3rd year

Solve the following auestions:-

Question One:	(20 Marks)
Put $(\sqrt{1})$ or (\times) then correct the false one:	
1- Refractive index is the ratio of the velocity of light in a medium to	the velocity of light
in a vacuum, it is always < 1.	
2- The concept of total internal reflection at the core-cladding bound	ary saves light inside
the core of an optical fiber.	
3- The meridional rays propagate through the graded index fib	er by total internal
reflection.	
4- At angles of incidence on (core cladding interface) smaller than	the critical angle the
light is reflected back into the dielectric medium.	
5- Attenuation is directly proportional to area of the cable,	
6- Attenuation is defined as the ratio of the output (received) optical	al power Po from the
fiber to the input (transmitted) optical power Pi into a fiber.	
7- Scattering of light energy due to heating of ion impurities results i	n dimming of light at
the end of the fiber.	
8- Macrobends is a type of bending loss due to complete fiber bends.	
9- The bending losses occur in multimode fibers may be reduced	by operating at the
shortest wavelength possible.	
10-The normalized frequency combines information about two impo	rtant design variables
for the liber: namely, the core radius and the relative refractive ind	ex difference.
	· · · · · · · · · · · · · · · · · · ·

Question Two:

(20 marks)

hoose	the	correct	answer:
-------	-----	---------	---------

	energy due to heating of ion	impurities results in dimming of light
at the end of the fiber. (a) Absorption	(b) Scattering	(c) Dispersion
2- Optical fibers suffer	losses at bends or	curves on their paths.
(a) Absorption	(b) Radiation	(c) Scattering

- 3- The bending losses occur in multimode fibers may be reduced by designing fibers with small relative refractive index differences.
- (a) Designing fibers with small relative refractive index difference.
- (b) Operating at the shortest wavelength possible.
- (c) both of them

	tion Three :		(30 Marks)
	-λc is the wavelength above Single-mode	e which a particular liber be (b) Multi-moded	(c) Both of them
9- (a)	is the maximur Acceptance angle	n angle which light may ento (b) Critical angle	or the fiber in order to propagate (c) Reflection
(a)	with distance Increases, increases	(b) Increases, decreases	(c) Decreases, increases
(a)	Intramodal	pe of dispersion (b) Intermodal	(c) Waveguide
	It may be observed that transmitted light pulse, wh Multimode step index	tich gives the minimum pulse	bits the smallest dispersion of broadening. (c) Graded index
(a)	fiber core, which allows re ∞	presentation of the step inde (b) 1	(c) 2
(a)	2.405		(c) 2.405√3

- A multimode fiber of 80 mm with a core refractive index of 1.500, a relative refractive index difference of 3% and an operating wavelength of 0.82 μm
- A 8 μm core diameter **single-mode** fiber with a core refractive index the same as multimode, a relative refractive index difference of 0.3% and an operating wavelength of 1.55 μm .

Estimate the following:

- a) The number of guided mode in the first fiber.
- b) Estimate the critical radius of curvature at which large bending losses occur in both
- c) Estimate the loss in decibels due to Fresnel reflection at a single interface when jointing two lengths of these fibers as there is a small air gap between the fiber end faces.
- d) Explain the problems occurred when jointing these fibers.
- 2- Explain with drawing the three types of misalignment which may occur when jointing compatible optical fiber.
- 3- Draw the block diagram of an Optical Communication System