KafrelSheikh University Faculty of Engineering Electrical Engineering Department Final Exam, 2020 - 2021 Subject: Modeling and Simulation. Year: 3th Computer Engineering & systems Academic Number: ECS3214 Date: 21 / 6 / 2021 Time: 3 Hours. Full Mark: 100, 2 pages This course must be able to satisfy the competencies for BASIC Electrical engineering discipline (Level B): B2 and the Computer Engineering and Systems competencies (Level C): C3 & C5. ## Question 1: [20 degree] Consider the system shown below. In this system, the two tanks interact. Construct a block diagram to describe this system, simplify it then get the transfer function $\frac{Q_2(s)}{Q(s)}$ ## **Question 2: [15 degree]** Two bodies at temperature T_I and T_2 are separated by two elements with different thermal resistance R_I and R_2 . Heat flows through the two elements at a rate of q. Find the equivalent thermal resistance R_{eq} and Solve for the interface temperature between the two elements. ## Question 3: [25 degree] - (a) Show how the PID controller adds a pole at origin and double zeros at $s = \frac{-4}{P_{cr}}$ [5 degree] - (b) Consider the system $G(s) = \frac{1}{s^3 + 2s^2 + 4s}$ Design a PID-controller using Zigler-Nicholes method. It is required to find K_{cr} , P_{cr} . [20 degree] ## Question 4: [30 degree] - (a) Deduce the state space model of DC motor with armature controlled. [5 degree] - (b) Consider a train consisting of an engine and a car, as shown below. A controller is applied to the train so that it has a smooth start and stop, along with a constant-speed ride. | 427/1010/101 | | | | | |--|--|--|--|--| | are held together by a spring, w | output equations. [5 degree]
degree] | ϵ . F represents the force | | | | Question 5: Choose the correct answer: [10 degree] | | | | | | 1- In P-D controller, the derivative action plays a significant role in increasing of response. | | | | | | a) Time b) Distance | c) Speed d) Volume | | | | | 2- Which among the following are the elements of rotational motion? a) Mass, Spring, Friction b) Inertia, Damper, Spring c) Work, Energy, Power d) Force, Pressure, Viscosity | | | | | | 3- The integral control:a) Increases the steady state errorc) Increases the noise and stability | The state of s | b) Decreases the steady state errord) Decreases the damping coefficient | | | | 4- For proportional control the s a) Infinity b) Zero | teady state error (offset) tends to Zero
c) One d) 0.5 | o when Kp is: | | | | 5- PID controller is used when sy
a) System changes are small
c) Fast recovery time | b) Offset must be eliminated) All above | ted | | | | Appendix: | | | | | | Type of controller | k p | T _i | T_d | |--------------------|---------------------|---------------------|----------------------| | P | 0.5 K _o | ∞ | 0 | | PΪ | 0.45 K _o | 0.83 T _o | 0 | | PID | 0.6 K ₀ | 0.5 T _o | 0.125 T _v | *********** Good Luck******** Dr. Wessam Fikry