KafrelSheikh University Faculty of Engineering Electrical Engineering Department Final Exam, 2020 - 2021 Subject: Elective course(3) "Neural network". Year: 4th Computer Engineering & systems Academic Number: ECS4230 Date: 27 / 6 / 2021 Time: 3 Hours. Full Mark: 70, 2 pages This course must be able to satisfy the competencies for BASIC Electrical engineering discipline (Level B): B4 and the Computer Engineering and Systems competencies (Level C): C3 & C5. | the Computer Engineering and Systems competencies (Level C): C3 & C5. | | |---|--| | Q1: Identify which of the following statements are True or Fa | lse: [5 Marks] | | 1. If you increase the number of hidden layers in a Multi-Lay | er Perceptron, the classification | | error of test data always decreases. | () | | 2. Increase in size of a convolutional kernel would necessarily convolutional network. | y increase the performance of a | | | () | | 3. The number of classes determines the number of output new patterns determines the number of input neurons. | irons, while the number of input | | 4. Boltzmann law is practical for implementation. | () | | 5. In a self- organizing map with input vectors of dimension m | and k neurons in the man there | | will be mk weights. | and a neurous in the map, there | | Q2: Choose the correct answer: [5 Marks] | | | 1- Which answer explains better the Full Connection? | | | a) Full Connection acts by placing different weights in each synapse in can be repeated until an expected result is achieved. b) Full Connection acts by placing different weights in each synapse in consistence, since we can get the best results in our first attempt. c) It is the last step of CNN, where we connect the results of the earlier of the increase. 2- What is the difference between CNN and ANN? a) CNN has one or more layers of convolution units, which receives its in the convolution units are assisted to the convolution units. c) CNN uses a simpler algorithm than ANN. d) They complete each other, so in order to use ANN, you need to start we can be repeated until an each synapse in can be reach reach | components to create a output. se the accuracy. input from multiple units. | | some of the case, so in order to use Arviv, you need to start v | WITH CININ. | | 3- In which neural net architecture, does weight sharing occur a) Convolutional neural Network c) Restricted Boltzm b) Fully Connected Neural Network d) Both A and B | r?
nann machine | | 4- What consist of Boltzmann machine? | | | a) Fully connected network with both hidden and visible unitsb) Stochastic update | c) Asynchronous operation d) all of the mentioned | | 5- When does a neural network model become a deep learning mod | lel? | | a) When you add more hidden layers and increase depth of neural networks.b) When there is higher dimensionality of data. | | | c) When the problem is an image recognition problem | d) none of these | ## Q3- Answer the following questions [15 Marks] - 1. Mention the Restricted Boltzmann machine. With use drawing. - 2. What are the flexibility in recurrent neural Networks? With drawing. - 3. How Does an LSTM Network Work? ## Q4- (a) Derive in steps the Self Organizing Map (SOM) algorithm [5 Marks] (b)Let the vectors to be clustered be (1,1,0,0); (0,0,0,1); (1,0,0,0); (0,0,1,1) the maximum number of clusters to be formed is m=2. [10 Marks] Suppose the learning rate (geometric decrease) η (0) =0.6., η (t+1)=0.5 η (t).R=0, and the initial weights matrix: $\begin{bmatrix} 0.2 & 0.8 \\ 0.6 & 0.4 \\ 0.5 & 0.7 \\ 0.9 & 0.3 \end{bmatrix}$ Q5- (a) What is Pooling on CNN, and How Does It Work? [4 Marks] (b) In the grayscale image below that represent in 6x6 matrix, what the convolved feature matrix after using a filter 3x3 is shown below, with stride=1 [10 Marks] | 3 | 0 | 1 | 2 | 7 | 4 | |---|-----|---|---|---|---| | 1 | - 5 | 8 | 9 | 3 | 1 | | 2 | 7 | 2 | 5 | 1 | 3 | | 0 | 1 | 3 | 1 | 7 | 8 | | 4 | 2 | 1 | 6 | 2 | 8 | | 2 | 4 | 5 | 2 | 3 | 9 | 1 0 -1 1 0 -1 **Image** Convolution kernel (c) Consider a 4 X 4 matrix as shown below: Applying max pooling on this matrix will result in a 2 X 2 output with a stride of 2. [4 Marks] | 1 | 3 | 2 | 1 | |---|---|---|----| | 2 | 9 | 1 | 1 | | 1 | 3 | 2 | 3 | | 5 | 6 | 1 | 2. | Q6- Consider the simple network below, Consider the simple network below: Assume that the neurons have a Sigmoid activation function and η =0.01 [12 Marks] - i. Perform a forward pass on the network. - ii. Perform a reverse pass (training) once (target = 0.5). - iii. Perform a further forward pass and comment on the result. ************ With Best Wishes *********** Dr. Wessam Fikry, Committee of Correctors and Testers