Kaferelsheikh University Faculty of Engineering

Department of Electrical Engineering

Year: 4th comm.

Subject: Antennas

Name:

ECE4225

Date: 23/6/2021 Time allowed: 3 h Full Mark: 90 degree Final Exam: 2 page

Academic Number:

This exam measures competences no: A.1, A. 3 A. 4, A5, A.8 A20, A21, B1, B.3 B.4, B.8, B.13 and C1, C.3, C.6.

$$1 - \int_{0}^{\pi} \sin^{3}\theta d\theta \int_{0}^{2\pi} d\theta = \frac{8\pi}{3} sr \quad 2 - \frac{jkd\cos\theta}{e^{\frac{jkd\cos\theta}{2}}} = \cos\frac{kd\cos\theta}{2} \quad 3 - \int_{-\infty}^{\infty} \frac{e^{-j\beta\sqrt{b^{2}}+t^{2}}}{\sqrt{b^{2}}+t^{2}} dt = -j\pi H_{o}^{(2)}(\beta b)$$

1] Question One[30degrees]:

- a) With a neat diagram compare between Micro strip and dielectric resonator antennas (Structure, principle of operation, feeding mechanisms). [10 degrees]
- b) What mean by parasitic array, explain about construction and operation of one type of this array. With a neat diagram. [6 degrees]
- c) What are Electrically Small loop antennas? Drive an expression for power radiated and radiation resistance of Small loop antenna where max power as the following. [8degrees]

$$p_{max} = \frac{w^2 \mu_o^2 I_o^2 S^2 \beta^2}{32 \eta_o \pi^2 r^2}$$

d) Two elemental dipole antennas each having length $l \ll \lambda$ forms an array as shown in Fig. 1. the excitation of the array elements is equal in magnitude and phase. Find the expression for the radiated field components at a point $P(r, \theta, \varphi)$. (Assume the antennas to be located in the free space) [6 degrees]

[2] Question Two[25 degrees]:

a) Derive the electric field components as in the following equations of the infinitesimal dipole [10 degrees]

$$E_{\theta} = j \eta \frac{k I_o l s i n \theta}{4 \pi r} \left[1 + \frac{1}{jkr} - \frac{1}{(kr)^2} \right] e^{-jkr} \quad E_r - \eta \frac{I_o l c o s \theta}{2 \pi r^2} \left[1 + \frac{1}{jkr} \right] e^{-jkr} \quad E_{\phi} = 0$$

- b) The maximum radiation intensity of a 90% efficiency antenna is 200mW/unit solid angle. Find the directivity and gain (dimensionless and in dB) when the: [8 degrees]
- 1) Input power is 125.66 mW

2) Radiated power is 125.66 mW

c) A CW circularly polarized uniform plane wave is traveling in the +z direction. Find the polarization loss factor PLF (dimensionless and in dB) assuming the receiving antenna (in its transmitting mode) is (a) CW circularly polarized (b) CCW circularly polarized

[3] Question Three[20 degrees]:

a) A resonant 6-turn loop of closely spaced turns is operating at 50 MHz. The radius of the loop is $\lambda/30$, and the loop is connected to a 50-ohm transmission line. The radius of the wire is $\lambda/300$, its conductivity $\sigma = 5.7 \times 10^7$ S/m, and the spacing between the turns is $\lambda/100$. Determine the following: [12] degrees]

- 1) Directivity of the antenna (in dB)
- 2) Radiation efficiency taking into account the proximity effects of the turns
- 3) Reflection efficiency
- 4) Gain of the antenna (in dB)
- b) Determine the directivity of Hertzian monopole antenna where the radiated power is [B] degrees $U(\theta, \phi) = P_{avg}r^2 = \frac{\eta}{2}(\frac{\beta I_o}{4\pi}dl \sin \theta)^2 (W/rad^2)$

[4] Question Four[15 degrees]:

- a) There is a 900 MHz whip antenna of length λ/4 and of gain 2 dBi on the roof of a car. What is the capture area of the antenna? Compare this area to the physical size of the antenna, with comment [5 degrees]
- b) $\lambda/2$ dipole situated with its center at the origin radiates a time-averaged power of 600 W at a frequency of 300 MHz. A second $\lambda/2$ dipole is placed with its center at a point $P(r, \theta, \varphi)$, where $r = 200 \, m$, $\theta = 900 \varphi = 400$. It is oriented so that its axis is parallel to that of the transmitting antenna. What is the available power at the terminals of the second (receiving) dipole? [5 degrees]
- c) Find the Vector potential of a line source of infinite length and constant current Io is positioned along the z-axis. 5 degrees